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Abstract. The intersection of line segments has already been studied by several authors. Several problems occurs when
using floating point representation, in which number comparison is performed using a tolerance value. One of the main
problems is the non-transitive property, as it may lead to incorrect results. Thus, fixed precision is preferred because it
solves several problems. However, fixed precision adoption has some complications. One of the issues is relates to the
intersection determination between two or more line segments. Particularly, in this research, it is shown that current
methods to determine intersection between line segments with fixed precision are not commutative; i.e., depending on
which order the line segments are processed a different result may be obtained. The line segment partition problem must
be solved beforehand. In order to approach these problems, two line segment representations are considered: geometric
and set representation. To the best of our knowledge, this is the first work which discusses the non commutative problem
of line segment intersection with finite precision.
Keywords: line segment intersection, discrete domain, floating point, Bresenham.

1. INTRODUCTION

Intersection of line segments is one of the most fundamental tasks in computer graphics. Applications include win-
dowing, clipping, hidden-line removal and Boolean operations. Windowing, clipping and hidden-line removal are cases in
which high precision is not necessary. On the other hand, 2D Boolean operations require precision and repeatability. Sato
et al. (2012) proposed an algorithm to solve irregular packing problems which requires millions of Boolean operations to
find a solution.

Boolean operations over polygons have the problem of lacking robustness. They face numerical instability and theo-
retical difficulties when performing geometric computations. These difficulties occur in boundary evaluations involving
ill-conditioned geometric intersections (Hoffmann, 1989). There is a great amount of research on robust geometrical
representations and computations. In floating point arithmetics, a threshold ε > 0 is required to compare two numbers.
Hoffmann (1989) presented the incidence asymmetry problem, in which a vertex can be incident to another vertex but not
the other way around, and the incidence intransitivity problem.

Hobby (1999) adopted finite precision to achieve robust algorithms for intersecting line segments. Agarwal et al.
(2002) used CGAL to implement a Minkowski sum algorithm with exact rational numbers, and they reported execution
times that range from a few seconds for shapes involving a small amount of concavities and up to twenty minutes for
highly irregular shapes. Hu et al. (1996) employed interval arithmetics to ensure robustness. Wallner et al. (2000) showed
that interval arithmetic is not geometric as it does not give exact error bounds. Several researchers used finite precision to
implement Boolean operations over polygons (Sato et al., 2013; Martínez et al., 2009; Leonov and Nikitin, 1997).

The majority of line segment intersection implementations use the sweep line algorithm proposed by Bentley and

Figure 1. Packing problem example. Irregulars items are arranged inside a rectangular container such that the occupancy
rate is maximized.
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Figure 2. Floating point arithmetics problems. (a) Asymmetric incidence problem. (b) Incidence intransitivity.

Ottmann (1979). The sweep line algorithm determines the intersection points with the aid of an imaginary line sweeping
the 2D space from left to right. However, if finite precision is adopted and a different direction is considered, from the
right to the left for example, a different result is obtained. This is a consequence of the fact that line segment intersection
determination with finite precision is not commutative. This implies that the order in which processes are performed
impacts the end result, specially in the case where there are multiple intersections between line segments.

The classic problems of cutting and packing, in which the objective is to find a layout where a set of items is placed
in a configuration which minimizes wasted material or unoccupied space (see Fig. 1), are examples of procedures that
use methods for line segment intersection determination (Sato et al., 2010, 2011). Due to non transitive property of the
operation, layouts obtained for packing problems may change when the order of operations is modified. Consequently, it
is possible that the best solution can be only obtained when a specific order of operations is employed. This adds an extra
dimension to an already complex problem.

This work investigates the non commutative property of intersection determination operations with finite precision. It
is shown that it is not easy to propose a solution and it might be necessary to modify some well assumed basic concepts.
The problem is approached using the Bresenham line drawing algorithm, which is responsible for selecting pixels to
represent a line segment. To the best of our knowledge, this is the first work which discusses the no commutative problem
of line segment intersection with finite precision. This work is structured as follows. Section 2 explains the problems
with discrete geometry. The proposed method to determine line segment intersections based in the Bresenham algorithm
to draw lines is addressed in section 3. Section 4 discusses problems which are specific to the proposed approach and
conclusions are drawn in section 5.

2. DISCRETE GEOMETRIC COMPUTATION PROBLEMS

In this section, problems with floating point computation are briefly explained and the robustness of discrete geometry
is discussed. In the following section, the non transitive property of line segment intersection determination with finite
precision is presented.

2.1 Why Discrete Geometry?

In B-Rep solid modelers, geometric entities such as point coordinates are considered mathematically ideal. They are
represented by floating point numbers and are consequentially processed using floating point arithmetics. However, as
demonstrated by Hu et al. (1996), data obtained using floating point arithmetics are usually approximated, thus making
floating point representation for geometric entities imprecise. This problem is caused by the fact that the precision of
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Figure 3. Line segment list example. s1, s2 ... s7 represent the sweep line positioned at each event point. Below the sweep
line the active list is displayed. The active list contains the line segments which crosses the sweep line immediately after

the event point.

(a) (b) (c)

Figure 4. Snap rounding example. (a) Three line segments which intersect in three different positions. (b) Tolerance
squares associated with each endpoint and the intersection point. (c) As the tolerance squares for all intersections are the

same, a point with the same coordinates is inserted in each line segment.

floating point arithmetics is finite.
Imprecisions may cause the following problems: non-reliability of geometric operations and inconsistencies between

the geometry and topology of geometric entities. Consider the problem of asymmetric incidence, shown in Fig. 2a. Four
line segments are considered: La, Lb, Lc and Ld. Point p is the intersection between La and Lb and point q is the crossing
point of line segments Lc e Ld. Although point q is incident to point p, point p in not incident to point q. This results
from the adoption of a threshold ε > 0 to determine if a floating point number equals zero. A point is considered to lay
on a line segment if the distance between these entities is less than ε. Thus, the intersection can be any point located in
the parallelogram shaped region generated by the intersection of the two regions with thickness of 2ε centered along each
of the line segments La e Lb. The same procedure can be applied to line segments Lc and Ld. Point q is internal to both
intersection regions of La–Lb and Lc–Ld, whereas point q is not internal to the intersection region of Lc and Ld.

Incidence intransitivity is another problem encountered when using floating point arithmetics. Fig 2b display three
points, a, b and c, where a = b as ‖a− b‖ < ε, b = c as ‖b− c‖ < ε, but a 6= c, as ‖a− c‖ > ε. Finite precision arithmetic
can solve these and other problems. Nevertheless, as it will be clear in the following sections, additional problems may
appear.

2.2 Sweep Line Algorithm

The geometric algorithm considered in this work is the sweep line algorithm. Originally proposed by Bentley and
Ottmann (1979), its main feature is the reduction of line segment pairs candidates for the intersection determination.
Hobby (1999) proposed an implementation of the sweep algorithm with fixed precision, which aims to avoid extraneous
intersections by the use of a snap rounding technique.

In the sweep line algorithm, an imaginary vertical line moves from the leftmost to the rightmost vertex, stopping at
event points in order to determine new intersections. When the sweep line reaches its leftmost position, all intersections
are determined and the algorithm is finished. There are three different types of event points: left endpoint, right endpoint
and crossing point. The endpoint events can be determined in a first step and the crossing events are determined as the
line sweeps the space, i. e. moves from left to right.

The line segments which intersects the sweep line are stored in the active list. This list is sorted by the vertical
coordinate of the intersection point of each line segment with the sweep line. If the list does not change when the sweep
line moves in one direction, then there is no line segment intersection in the region traversed by the sweep line. Changes
in the active list occurs only at event points. Thus, checking for intersection is only needed at event points. Moreover, a
line segment can only intersect with its immediate superior or immediate inferior in the active list. Performing only these
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Figure 5. Example where the commutative property is not satisfied. (a) Coordinates for the endpoints are: l1 : (0; 10) and
(25; 5), l2 : (0; 0) and (25; 15), l3 : (13; 14) and (13; 1), l4 : (13; 7) and (23; 7). (b) Result of the intersection of l4 with

the result of the intersection processing of l1, l2 and l3. (c) Intersection of line segments l1 and l4.
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(a)
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Figure 6. Example of the application of the Bresenham algorithm for line segment representation. (a) Line segment
represented by Bresenham algorithm; (b) correspondent error representation.

checks reduces the complexity of the algorithm when compared with algorithms which checks all possible line segment
pairs. Fig. 3 shows the active list corresponding to each event point.

Although he Bentley–Ottmann algorithm can be implemented directly using exact real geometry, the memory needed
to store the exact coordinates may become too large as more operations are executed, thus a practical alternative must
be adopted. One solution for this problem is to use finite precision. However, rounding the intersection coordinates
to integer values without careful inspection can lead to extraneous intersections. The practical intersection algorithm
proposed by Hobby (1999) solves this problem with snap rounding. At each intersection, the intersection tolerance
square, a unitary square centered on a grid point, is determined and the point is inserted to the appropriated line segments.
Before the snap rounding, all tolerance squares are created using the intersections determined by the Bentley–Ottmann
algorithm. A second step of the algorithm is then performed, consisting of determining each line segment which crosses
the tolerance squares and inserting a point in such line segments. Fig. 4 shows an example of the snap rounding strategy,
which avoids extraneous intersection by bending the line segments which intersects the tolerance square. Using this
algorithm, extraneous intersections are avoided (Hobby, 1999).

2.3 Non Commutative Property

Fig. 5 shows an example in which the commutative property is not satisfied. If line segments l1, l2 and l3 are processed
first, line segments l1 and l2 are bended. When intersecting the result with l4, the crossing point is (17; 7), as can be seen
in Fig. 5b. If the input of the first operation are l1 and l4, then the intersection can be determined exactly at (15; 7) (see
Fig. 5c). As the crossing is exact, line segment l1 remains a straight line segment and the intersections with l2 and l3 do
not change. The intersection between l1 and l4 can result in different points depending on the evaluation order.

3. BRESENHAM ALGORITHM

The Bresenham algorithm can shed light on the non commutative property discussion. It was proposed by Bresenham
(1965) and it is used as an algorithm for line segments representation in discrete domain, with fixed precision. As it
determines coordinates for each point in the line segment, it was originally employed to determine which pixels of a
screen should be set in order to create a visual representation of the line segment. From the initial point, one of the
endpoints of the line segment, a main direction is defined and, at each iteration, the coordinate of the point is incremented
in this direction. The perpendicular direction is determined by the distance from the real line segment. This distance is
defined as the error of each chosen point and the next point is chosen so as to minimize the error.
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Figure 7. Bending problem using Bresenham algorithm for line segment representation. (a) Original line segment. (b)
Partitioned line segment.

Algorithm BRESENHAMLINE is an implementation of the Bresenham algorithm for line segment representation, de-
scribed in Algorithm 1. The described algorithm can only be applied to a line segment whose slope is between 0◦ and
45◦. Input are the endpoints P1 and P2, such that P1 is the left endpoint and P2 is the right endpoint and the output is a
list of points. Variable err stores the approximation error at each point. The algorithm can be generalized for any slope by
decrementing y instead of incrementing, when ∆y < 0, and swapping the x and y dimensions when ∆x < |∆y|. Fig. 6
shows an the result and errors for an example case.

Algorithm 1: BRESENHAMLINE(x1, y1, x2, y2)

∆x← x2 − x1;
∆y← y2 − y1;
x← x1;
y← y1;
Eerr ← 2∆y −∆x;
while x ≤ x2 do

<Store point (x, y)>;
if Eerr > 0 then

y ← y + 1;
Eerr ← Eerr − 2∆x;

x← x+ 1;
Eerr ← Eerr + 2∆y;

<Store point (x, y)>;

4. DISCUSSION

Two different representations for line segment are discussed. Both representations can be derived from the Bresenham
algorithm. The Bresenham algorithm has as input two points in the 2D space and as output, the algorithm determines a
set of points associated with the line segment. Then, a line segment can be represented by its endpoints (called geometric
representation). And, the line segment can be represented by a set of points (called set representation). The geometric
representation needs two points, thus memory requirement is low. For the set representation, on the other hand, the amount
of memory necessary to store the line segment depends on its length.

Two problems are discussed in this section: line segment partition and line segment intersection. Both problems are
correlated, as when an intersection is present, the intersecting line segments are partitioned.
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Figure 8. Bresenham generated lines intersection. (a) One point in common; (b) no common point between line segments;
(b) multiple common points.

4.1 Line Segment Partitioning

Line segment subdivision occurs when a point is inserted into a line segment. When geometric algorithms for intersec-
tion detection are adopted, line segments are represented by their endpoints. Thus, node insertion in the discrete domain
usually causes the line segment to bend as nodes are always inserted in grid coordinates. When line segments bend, the
union of the partitioned line segments is not equal to the original line segment. If special techniques are not employed,
bending may lead to extraneous intersections and non commutativity of the operation. Bresenham based line segment
division also has the same problem if the partitioned line segments are reprocessed, as shown in Fig. 7.

The original line segment is from A(1, 1) to C(7, 8). Consider that the original line segment is divided at B(3, 3).
The partitioned line segment BC has different points when compared to the original line segment. This way, the union of
the set of points representing line segments AC and BC is different with the set of points representing AC. It should be
better if the set of points is kept the same and defined by the original line segment.

The line segment partitioning problem can be stated as: the original line segment and both partitioned line segments
must have the same set of points. Considering the set representation, the solution is easy. Just separate the point set in two
appropriate sets. The geometric representation can have a solution if additional information is added to the Bresenham
algorithm. For example, some variables that store the state of the Bresenham algorithm: Eerr the initial error, ∆x and
∆y the slope of the line segment. The error associated with each point is used to generate the original vector of points.

Algorithm 2 describes the algorithm MODIFIEDBRESENHAMLINE. If the line segment is original, i.e. none of the
endpoints were created by the intersection algorithm, the algorithm is equal to the algorithm BRESENHAMLINE. In this
case, flag is true. If the line segment is a partitioned line segment, then the algorithm state is retrieved from the input
variables, replicating the original line segment.

Algorithm 2: MODIFIEDBRESENHAMLINE(x1, y1, x2, y2, Eerr,∆x,∆y, flag)

if <flag> then
∆x← x2 − x1;
∆y ← y2 − y1;
Eerr ← 2∆y −∆x;

x← x1;
y ← y1;
while x ≤ x2 do

<Store point (x, y) >;
if Eerr > 0 then

y ← y + 1;
Eerr ← Eerr − 2∆x;

Eerr ← Eerr + 2∆y;
x← x+ 1;

<Store point (x, y) >;
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(a) (b) (c)

Figure 9. Dealing with intersection with no common point or more than one common points. (a) No common points,
multiple division approach. (b) No common points, point addition proposal. (c) Multiple common points, subdivision

approach.

4.2 Bresenham Based Line Intersection

Considering the proposed solution for the line segment partition problem, intersection determination can be performed.
Using the Bresenham algorithm, line segments can be represented by a set of points, one for each coordinate in the main
direction, in the interval between endpoints. Intersection can be determined by the intersection between sets. If two line
segments cross, the intersection is a point. However, when using the proposed representation, three cases exist for crossing
line segments:

1. the intersection is a single point, which can be considered the approximate intersection in the discrete domain (see
Fig. 8a).

2. the intersection is empty (see Fig. 8b);

3. the intersection is a set of points, which represents a line segment (see Fig. 8c).

Fig 8 shows examples for each possibility. When determining intersection, case 1 is the ideal situation, as there is
only one possibility for the crossing point. Both line segments can be partitioned using the algorithm 2, without any
modification. The other two cases are more complex and needs further investigation.

In case 2, two line segments intersect, nevertheless their set representations shows no common point. Fig. 8b exhibits
a typical example. The intersection occurs inside one grid square and points from both line segments occupy all four
corners of such square. The approximated crossing point can be selected by finding the closest grid point, same as the
geometric algorithm. In the case of Fig. 8b, the top right corner of the rectangle is selected. A point of the positive sloped
line segment is located in this corner, so no changes are performed for such line segment. For the negative sloped line
segment, two solutions are proposed. The first is to divide the line segment into four partitioned line segments, as shown
in Fig. 9a. Bending only occurs on the square in which the line segments cross, limiting the impact. A second option
is to simply add the intersection point to the line segment, the top left corner point in the example shown in Fig. 8b. In
this case, more than one point exists on the same vertical, which is usually not considered when dealing with Bresenham
generated algorithms (see Fig. 9b). In both cases, the set of points do not change.

The intersection point is also determined by the closest grid point when multiple common points exist. Consider the
situation shown in Fig. 8c where the set intersection consists of two points. The intersection lies exactly on grid point
(5, 5). The simplest approach is to ignore the other common points and adopt (5, 5) as the intersection point. Second
option consists of partitioning the line segment. The result consists of three line segments, the first starts at the initial
point and ends at the first common point. The following line segment ends at the last common point and the third and last
line segment ends in the final endpoint. Fig. 9c shows this approach.

5. CONCLUSIONS

In this work, the non commutative property of line segment intersection with finite precision is discussed. It is shown
that a more basic property should be the preservation of the point sets when a line segment is partitioned. The information
of the original line segment must be kept. Two possibilities for line segment representation are considered: geometric and
set representations. Both representations satisfies the commutative property if the point sets are preserved. Three possible
line segment intersection situations were considered: single point, empty and multi-point. For empty intersection, some
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micro line segments can be included to correctly represent the intersection. Another possibility is to modify the line
segment representation to include some additional points. This work is a first attempt to understand and find the solutions
to the problem of obtaining robust geometrical processing using finite precision.
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