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Abstract

The rate tensor of plastic deformation in elasto-viscoplastic models is usually decomposed in direction and
magnitude. In the case of small-strain J2 models, this leads to the well known radial return mapping algorithms
in which the flow direction is known a priori at each load step. In the context of the variational large-strain
elasto-viscoplastic models, this decomposition between constitutive and cinematic aspects is accomplished by
the choice of logarithmic strain measures, exponential integration algorithm and quadratic (Hencky) elastic
potentials. The aim of this paper is to show that the mentioned decoupling properties can be extended to a
wide set of hyperelastic-plastic isotropic models not restricted to Hencky-type elastic behavior by relaxing the
classical decomposition amplitude/direction into the sum of spectral quantities.

1 Introduction

A variational formulation of irreversible (i.e. dissipative) constitutive models was initially proposed
in [1, 2], in an isothermal context, and later extended to a fully coupled thermo-mechanical context
in [3]. One of the most relevant aspects of variational approaches is that they provide appropriate
mathematical basis for error estimation and mesh adaptation [2]. Applications to non-linear finite
viscoelasticity were studied in [4] where an spectral decomposition of elastic/inelastic strain/strain-
rates quantities is proposed in order to allow the inclusion of arbitrary elastic and inelastic (isotropic)
potentials within the same formalism.

In elasto-plasticity and elasto-viscoplasticity, the rate tensor of plastic deformation (or its incre-
mental value), is usually decomposed in direction, related to the gradient of a yield potential, and
magnitude. In the case of von Mises (J2) type flows and small strain range, this decomposition provides
a complete separation between kinematic and constitutive aspects which reduces the problem to the
determination of the plastification in a known radial direction. Analogous results are obtained with

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



228 E. Fancello, J.M. Vassoler and L. Stainier

classical hyperelastic based models by using appropriate logarithmic strain measures and exponential
integration algorithm [5–8]. In the variational approach, both internal quantities are determined by a
local minimization process. Moreover, It is shown in [1] that the kinematic and constitutive decoupling
is, once again, achieved by the choice of logarithmic strain measures, exponential integration algorithm
and quadratic elastic potential (Hencky model).

The aim of this paper is to show that the mentioned decoupling properties may be extended to a wide
set of simple hyperelastic-viscoplastic isotropic models not restricted to quadratic elastic behavior. This
is performed by relaxing the classical decomposition amplitude/direction in a similar way as done in [4],
by using spectral quantities. Moreover, this approach allows for a natural combination of viscoelastic
and viscoplastic dissipative mechanisms appropriate for a group of thermoplastic polymers, which is
the final goal of this research.

The paper is organized as follows. Section 2 briefly presents the variational approach for irreversible
constitutive problems. The application of this approach to elasto-viscoplastic materials is stated in
Section 3 where the main results of this work are shown. Section 4 shows two particular material
models within the present context while Section 5 presents a couple of numerical examples. Final
remarks are shown in Section 6.

2 Incremental formulation for inelastic constitutive behavior

The main assumption in Hyperelasticity is the existence of a potential function Ψ which depends on
the value of strains only and whose derivative provides the state of stress of a material point, i.e.,

P =
∂Ψ(F)

∂F
= 2F

∂Ψ(C)
∂C

(1)

In (1) F = ∇0x denotes the gradient of deformations, C = FT F is the Cauchy strain tensor and
P the first Piola Kirchhoff stress tensor. Assuming the satisfaction of compatibility and constitutive
equations, the equilibrium problem may be defined by the minimization of the Potential Energy

min
x∈K

H(x)

H(x) =
∫

Ω0

Ψ(F(x)) dΩ0 −
[∫

Ω0

b0 · x dΩ0 +
∫

Γ0

f0 · x dΓ0

]
(2)

where K is the set of admissible deformations.
On the other hand, the state of stress of an inelastic path dependent dissipative phenomenon cannot

be obtained just from the value of final strains and it is not any longer possible to define a potential
function with the property (1). The history of the process is usually is described incrementally with
the aid of internal (dissipative) variables. However it is shown in [1, 2], that a wide set of dissipative
materials can be modelled by the aid of pseudo potentials that behave like hyperelastic (in the sense
that satisfy (1)) within the interval of a load increment, i.e.,

Pn+1 =
∂Ψ(Fn+1; En)

∂Fn+1
= 2Fn+1

∂Ψ(Cn+1; En)
∂Cn+1

(3)
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where E denotes a set of external and internal variables:

E = {F,Fi,Q} F = FeFi (4)

The tensors Fe and Fiare the elastic and inelastic parts of the gradient of deformations while the
quantity Q contains all the remaining internal variables used to describe the process. The subindexes
n and n+1 indicates the beginning and end of the load increment and it is supposed that all quantities
at time n are known.

For a quite general set of inelastic problems the potential Ψ(Fn+1; En) takes the form (see [1], [2]
for a detailed construction):

Ψ(Fn+1; En) = min
Fi

n+1
Qn+1

{
W (En+1)−W (En) + ∆tψ

(
F̊i, Q̊; En

)}
(5)

W (E) = ω(F) + ϕe(FFi−1) + ϕi(Fi,Q) (6)

where F̊ (Fn+1, En) , F̊i
(
Fi

n+1, En

)
and Q̊ (Qn+1, En) are suitable incremental approximations of the

rate variables Ḟ, Ḟi and Q̇ respectively. The potentials W, and ψ inside (5) may assume different
expressions depending on the particular model needed. The expression of W (E) in (6) assumes that
the free energy can be additively decomposed in potentials depending on F, Fe and Fi,Q respectively.
The minimization in (5) with respect to the internal variables Fi

n+1 and Qn+1 provides an evolution
path of these variables within the time step and eliminates them from the potential Ψ enforcing it to
be dependent only on the gradient of deformation Fn+1.

3 A set of hyperelastic-viscoplastic isotropic models

In this section, we focus an elastic-viscoplastic models1. Consider a free energy function which ω(E)
accounts for the separation of F in volumetric and isochoric parts:

ω(F) = ϕ(F̂) + U(J) (7)

F̂ =
1

J1/3
F, Ĉ = F̂T F̂, J = det(F) (8)

Thus, we rewrite W (E) as

W (E) = ϕ(F̂) + ϕe(F̂Fp−1) + ϕp(Fp,Q) + U(J) (9)

where

F̂ = F̂eFp =⇒ F̂e = F̂ (Fp)−1
, detFp = 1 (10)

Ĉe = F̂eT F̂e =
3∑

j=1

ce
jE

e
j (11)

1Just for facility of notation we change the superscript i (inelastic) for p (plastic).
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A rate of plastic deformation (or plastic stretching) Dp is defined as

Dp = sym(Lp) = Lp = Ḟp (Fp)−1 (12)

i.e., Lp is assumed to be symmetric. This means that no plastic spin W p =
(
Lp − LpT

)
/2 is considered.

If a von Mises’ flow type is assumed, The tensor Dp may be decomposed as follows:

Dp = q̇M, (13)

q̇ ∈ R+, (14)

M ∈ KM = {N ∈ Sym : N ·N =
3
2
, N · I = 0}. (15)

where the non-negative scalar q̇ accounts for the amplitude of Dp while the normalized traceless
tensor M provides the direction of Dp. It is shown in [1] that, when this separation is combined
with logarithmic strains and quadratic hyperelastic (Henky type) potentials, a complete separation of
kinematic aspects (provided by M) and constitutive aspects (provided by q̇) is reached and constitutive
expressions similar to those of infinitesimal plasticity theory are obtained. This result is also verified
in more classical hyperelastic-plastic and viscoplastic approaches [8]. In order to extend these facilities
to more general hyperelastic laws other than Hencky, a spectral decomposition of Dp is here used,
following the ideas proposed in [4]:

Dp = M = q̇
3∑

j=1

qjMj (16)

q̇ ∈ R+, qj ∈ KQ =
{

pj ∈ R :
∑3

j=1pj = 0;
∑3

j=1p
2
j = 3/2

}
(17)

Mj ∈ KM = {Mj ∈ Sym : Mj ·Mj = 1, Mi ·Mj = 0, i 6= j} (18)

The set KQ enforces the traceless form of M with fixed norm, while the set KM accounts for usual
properties of eigenprojections.

Equation (16) has a special meaning: it defines a flow rule for Ḟp and establishes a constraint
between Fp and q through the flow directions qjMj . Due to this constraint, Fp becomes a internal
variable dependent of the (independent) internal variables {q, qj ,Mj}

An incremental approximation of Dp is obtained by the exponential mapping:

∆Fp = Fp
n+1 (Fp

n)−1 = exp[∆tDp] (19)

∆Cp = (∆Fp)T ∆Fp = Fp−T
n Cp

n+1 (Fp
n)−1 = exp[∆tDp]2 (20)

⇒ ∆εp = ∆tDp =
1
2

ln (∆Cp) = ∆t q̇
3∑

j=1

qjMj = ∆q
3∑

j=1

qjMj (21)

⇒ Fp
n+1 = exp

[
∆q

3∑
j=1

qjMj

]
Fp

n (22)
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The elastic potential ϕe is assumed to be an isotropic function of the elastic deformation depending
on its eigenvalues:

ϕe(Ĉe) = ϕe(ce
1, c

e
2, c

e
3), Ĉ

e
= F̂eT F̂e =

3∑
j=1

ce
jE

e
j (23)

This function is also described in terms of the natural strain εe = 1
2 ln Ĉe which has the same eigen-

projections of Ĉe and eigenvalues given by εe
j = 1

2 ln ce
j :

ϕe(εe) = ϕe(εe
1, ε

e
2, ε

e
3)

The plastic potential ϕp accounts for hardening phenomena. In this case we consider an isotropic
hardening depending on the internal variable q :

ϕp = ϕp(q) (24)

q(t) =
∫ t

0

q̇ dt qn+1 = qn + ∆t q̇ = qn + ∆q (25)

The dissipative isotropic plastic potential ψ depends on Dp through q̇ :

ψ(Dp) = ψ

(
∆q

∆t

)
= ψ(q̇) =

{
ψ̄(q̇) if q̇ ≥ 0

+∞ if q̇ < 0
(26)

This definition of ψ has the objective of incorporating an exact penalization for negative values of q̇.
The potential ϕ(F̂) is considered null for the present set of proposed models. The internal variables

are reduced to ∆q and the spectral quantities {qj ,Mj} that substitute the minimizing variables
Qn+1,F

p
n+1 in (5). The incremental potential Ψ is thus re-written as

Ψ(Fn+1; En) = Ψ(Cn+1; En) = ∆U(Jn+1) + min
∆q,Mj ,qj

{
∆ϕe(Ĉe

n+1) + ∆ϕp(qn+1) + ∆tψ̄
(

∆q
∆t

)}
(27)

∆ϕe(Ĉe
n+1) = ϕe(Ĉe

n+1)− ϕe(Ĉe
n) (28)

∆ϕp(qn+1) = ϕp(qn+1)− ϕp(qn) (29)

∆U(Jn+1) = U(Jn+1)− U(Jn) (30)

where the minimization operation is constrained by the conditions

qj ∈ KQ =
{

pj ∈ R :
∑3

j=1pj = 0;
∑3

j=1pjmj = 3/2
}

(31)

Mj ∈ KM = {Nj ∈ Sym : Nj ·Nj = 1, Ni ·Nj = 0, i 6= j} (32)

∆q ≥ 0 (33)

First order necessary optimality conditions of the minimization problem (27) take into account the
derivatives of potential Ψ as well as the derivatives of constraints (31), (32) and (33). The minimization
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along the eigenprojections Mj can be calculated analytically. In order to perform this operation, a
relevant relation between elastic and plastic deformations is shown:

F̂e
n+1 = F̂n+1

(
Fp

n+1

)−1 = F̂pr (exp[∆tDp])−1
, F̂pr = F̂n+1 (Fp

n)−1 (34)

Ĉe
n+1 = F̂eT

n+1F̂
e
n+1 = Ĉpr (exp[∆tDp])−2

, Ĉpr = Fp−T
n Ĉn+1 (Fp

n)−1 (35)

εe
n+1 =

1
2

ln Ĉe
n+1 = εpr −∆tDp, εpr =

1
2

ln Ĉpr (36)

Equation (35) is only valid if co-linearity between Ĉpr and Dp is assumed in order to allow permutation
between both tensors. Using this assumption, it is possible to show that the minimization with respect
to Mj is achieved when the tensors Ĉe

n+1, Ĉpr and Dp share the same eigenprojections: Ee
j = Epr

j =
Mj . This means collinearity between Ĉpr and Dp which corroborates the permutability assumption
made in (35). Moreover, the optimality conditions for qj and ∆q take the form

ri = −∂∆ϕe

∂εe
i

∆q + λ + 2βqi = 0, i = 1, 2, 3 (37)

r4 = −
3∑

j=1

∂∆ϕe

∂εe
j

qj +
∂∆ϕp

∂∆q
+

∂ψ

∂q̇
= 0 (38)

r5 =
3∑

j=1

qj = 0 (39)

r6 =
∑3

j=1q
2
j = 3/2 (40)

Once the minimization is performed, the derivative of Ψ with respect to Ĉn+1 and Jn+1 should be
calculated in order to obtain the Piola-Kirchhoff stress tensor. Due to the separation of potential Ψ
in isochoric and volumetric contributions, the stress tensor P is re-written as

Pn+1 = 2Fn+1
∂Ψ(Cn+1; En)

∂Cn+1
= Fn+1

[
J
−2/3
n+1 DEV

(
2

∂ϕe

∂Ĉn+1

)
+

∂U

∂Jn+1
Jn+1C−1

n+1

]
(41)

where:
∂ϕe

∂Ĉn+1

=

(
3∑

j=1

∂ϕe

∂cpr
j

∂cpr
j

∂Ĉpr

)
∂Ĉpr

∂Ĉn+1

= (Fp
n)−1

(
3∑

j=1

∂ϕe

∂εe
j

1
2cpr

j

Epr
j

)
(Fp

n)−T
. (42)

4 Material tensors

An important aspect form the numerical implementation point of view is the determination of the
tangent matrix, consistent with the constitutive incremental update algorithm. The contribution to
the tangent matrix from geometric terms is common to any hyperelastic model. Thus, we focus here
on the expression of the second derivative of the present incremental material update. We use here the
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notation d(·)
dĈn+1

as the total derivative of the argument with respect Ĉn+1. We define thus the tensor
C :

C =
d

dĈn+1

(
∂Ψ

∂Ĉn+1

)
=

d

dĈn+1

(
∂ϕe

∂Ĉn+1

)
(43)

Considering Ĉpr = (Fp
n)−T Ĉn+1 (Fp

n)−1
, calling fpn=(Fp

n)−1 and dropping index n + 1, we have:

Cijkl =
3∑

m,t,p,q=1
fpn
im fpn

jt

d

dĈpr
pq

(
∂ϕe

∂Ĉpr
mt

)
fpn
kp fpn

lq = Cϕe

klij = Cϕe

jikl.

The critical point is the obtention of the derivatives of ϕe with respect to Ĉpr = cpr
j Epr

j . In spectral
coordinates this requires the computation of the following functions:

yi =
∂ϕe

∂cpr
i

=
∂ϕe

∂εe
i

1
2cpr

i

, (44)

yi,j =
d

dcpr
j

(
∂ϕe

∂εe
i

1
2cpr

i

)
=

∂2ϕe

∂εe
i ∂εe

i

dεe
i

dεpr
j

1
4cpr

i cpr
j

− ∂ϕe

∂εe
i

δij

2 (cpr
i )2

. (45)

The terms ∂ϕe

∂εe
k
and ∂2ϕe

∂εe
k∂εe

l
are straightforward. On other hand, the relation εe

k(εpr
1 , εpr

2 , εpr
3 ) is defined

by the derivation of the nonlinear system (37,40) which provides the terms dεe
i

dεpr
j
.

5 Examples

In this section, some expressions for the potentials considered are stated in order to obtain different
models.

The dissipative term ψ play an important role: it defines the threshold among the elastic and
inelastic regions and its definition is non differentiable. Its expression also defines the rate dependence
or independence of the plastic deformation. The Perzina law is achieved for

ψ(q̇) =





mY0q̇0

m + 1

(
q̇

q̇0

)m+1
m

if q̇ ≥ 0

+∞ if q̇ < 0
(46)

When m →∞ the potential becomes

ψ(q̇) =

{
Y0q̇ if q̇ ≥ 0

+∞ if q̇ < 0
(47)

providing a rate independent plastic deformation.
A quadratic expression for the plastic potential express a linear hardening rule:

ϕp(q) = Σ0q +
h

2
(q)2 (48)
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5.1 Hencky-based model

In this section we analyze the case when the elastic potential is based on quadratic form of the
logarithmic strain tensor (Hencky-type potentials [8, 9]):

ϕe = µe
3∑

j=1

(
εe
j

)2

The potentials ψ and ϕp take the forms (47) and (48) respectively. Thus,

∂ϕe

∂εe
j

= 2µeεe
j = 2µe(εpr

j −∆q qj)

∂ψ

∂q̇
= if q̇ ≥ 0

∂ϕp

∂∆q
= Σ0 + hqn+1

In this case, the conditions (37) take the particular form

ri = −2µe(εpr
i −∆q qi)∆q + λ + 2βqi = 0, i = 1, 2, 3 (49)

r4 = −
3∑

j=1

2µe(εpr
j −∆q qj)qj + Σ0 + hqn+1 + Y0 = 0 (50)

r5 =
3∑

j=1

qj = 0 (51)

r6 =
∑3

j=1q
2
j = 3/2 (52)

After some algebra , the following expressions may be obtained:

∆q =

√
3
2 ‖spr‖ − (Y0 + Σ0 + hqn)

3µe + h
if ∆q ≥ 0 (53)

qi =
3µeεpr

i

a∆q + b
(54)

which is the usual expression for elastoplastic radial return von-Mises model. Finally, (54) allow the
computation of εe

i = 2µe(εpr
i −∆q qi) needed for the elastic potential.

5.2 Ogden-based model

In the previous case, the quadratic function of the logarithmic strains is particularly convenient to
obtain an explicit expression for for the minimizing argument ∆qp

j . In spite of this advantage, it is
well known that this type of hyperelastic potential do not fit very well other materials like polymers.
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For that case, a more adequate choice may be the Ogden hyperelastic model ([8–10]) which has also
the property of generalizing others models like neo-Hookean and Mooney-Rivlin:

ϕe =
3∑

i=1

N∑
p=1

µe
p

αp
([exp(εe

i )]
αp − 1) (55)

∂ϕe

∂εe
i

=
N∑

p=1
µe

p [exp(εi)]
αp (56)

In this case, the conditions (37) take the particular form

ri = −
N∑

p=1
µe

p [exp(εi)]
αp ∆q + λ + 2βqi = 0, i = 1, 2, 3 (57)

r4 = −
N∑

p=1
µe

p [exp(εi)]
αp qj + Σ0 + hqn+1 + Y0 = 0 (58)

r5 =
3∑

j=1

qj = 0 (59)

r6 =
∑3

j=1q
2
j = 3/2 (60)

whose solution provides ∆q, qj , λ and β.

6 Numerical example. Uniaxial traction test

This simple example illustrates the behavior of this approach for the case of a traction test submitted
to a constant strain rate. Two material models were tested: Hencky and Ogden. Both materials were
considered incompressible through a convenient penalization value of K. The Ogden model used
N = 3, i.e., p = 1, 2, 3. The corresponding parameters are listed in Table 1. For both cases, potentials
(46) and (48) were used with parameters Y0 = 1, m = 0.8, q̇0 = 0.1, Σ0 = 20, h = 20. It is important
to remark that this used values are merely illustrative, with no relation to a specific material. Both
specimens were elongated up to λ = 3 (ε = ln λ = 1.0986) with constant strain rates of 1, 0.5 and 0.1
and unloaded at the same strain rate. The results for the Hencky model are shown in Figure 1 where
the expected dependence of the strain rate for the permanent deformation region is found. In Figure 2
the results for the Ogden model are shown. Classical Ogden-type elastic response is obtained, followed
by a rate dependent plastic behavior.

7 Concluding remarks

A general set of hyperelastic-viscoplastic material models was proposed in this paper. This approach,
imbedded within an unified variational approach of inelastic material models [1], is characterized by
a spectral decomposition of viscoplastic strains and by generic hyperelastic and viscoplastic isotropic
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Table 1: Material parameters for cyclic shear test.

Potential Ogden Hencky

µi −94.22 140.42 35.21 µ = 30.0

αi 3.0559 1.3328 3.8812
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Figure 1: Uniaxial traction test. Hencky model.

potential functions. Different material models may be obtained just by changing the expression of these
potentials and their derivatives. The stress and internal variables updates require (in the general case)
the solution of a six nonlinear equation system to determine the eigenvalues of viscoplastic increments.
This nonlinear system has an analytically invertible tangent matrix which provides computationally
inexpensive Newton solutions and the symmetric material tensor for the tangent matrix calculations.

All these characteristics will allow us to combine this formulation with that already obtained for
nonlinear viscoelastic behavior [4] in order to propose consistent models for polymeric materials subject
to combined viscoelastic and viscoplastic strains, which is the subject of future works.
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Figure 2: Uniaxial traction test. Ogden model.
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