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Abstract. The design and implementation of full-order controllers often requires advanced hardware and high compu-
tational processing effort mainly for problems that involves large models, such as the vibration control of structures. To
avoid this, it is recommended to use reduced order controllers. Approaches using Linear Matrix Inequalities (LMI) are
widely employed in the design of reduced or fixed order controllers. This approach presented good results of performance
and minimization of the H-infinity norm. However, the computational cost to obtain the controller can be high for large
systems. The aim of this work is to present a direct minimization method for designing reduced order H-infinity controllers
with a low computational cost. For this goal, it is formulated an optimization problem, so that minimizing the H-infinity
norm guaranteeing the stability of the closed loop system. The solution of the optimization problem is obtained using the
genetic algorithms, exploiting the advantage of this point of view where there are numerical difficulties and a complex
search space. This formulation is verified in the design of a wind gust disturbance controller for the linearized model
of the F-8 aircraft often used with other methods of reduced order H-infinity controller design. A comparison of the
proposed formulation and the combination of the LMI and the Augmented Lagrangian method are presented in this work.
The proposed approach can be applied to the vibration control problem of large structures. The optimization problem is
solved using MATLAB software and some numerical aspects of the problem are also discussed.
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1. INTRODUCTION

In the controller design problem for active vibrations, one usual criterion is the minimization of the H-infinity norm,
which consists of peak frequency response attenuation of the controlled system, while maintaining stability. Particularly
in the case of problems of vibration control, the interest of the reduction of the peak value is associated to reduce the
resonance peaks.

The H-infinity control is particularly interesting to increase the ability of the system to reject disturbances, as well as
to increase its robustness.

One way to solve the problem of H-infinity control is through its formulation as a problem of linear matrix inequalities
(LMI) (Boyd et al., 1994; Schereret al., 1997). The usual H-infinity formulation leads to a full order controller (same
order of the plant). This can represent difficulties for practical controller implementation. To avoid this difficulty, reduced
order controllers can be designed, looking for reasonable performance and stability.

The design of reduced order H-infinity controllers characterizes a non-convex optimization problem. In this context,
some authors have succeeded to treat the non-convexity using a combination of the Augmented Lagrangian method and
linear matrix inequalities (LMI) (Apkarianet al., 2003; Sarracini, 2006). This approach can be an efficient method but
can lead to high numerical cost for the solution.

In this work an optimization problem to design reduced order controller is presented. The synthesis of reduced order
controllers can be viewed as the minimization of the H-infinity norm of the closed loop system subject to the stability
conditions. In this nonlinear optimization problem, each element of the controller matrices is an optimization variable to
be found. To reduce the computational cost, the controller matrices will be obtained in its state-space canonical form. For
the case of multiple-input and multiple output (MIMO), the controller is adapted to maintain the canonical form in one of
its subsystems single-input and single-output (SISO).

The major difficulty of this problem is related to the search process (non-linear/non-convex optimization problem).
The genetic algorithms are search stochastic algorithms based on natural selection where the central focus of research
is the robustness and the balance between efficiency and efficacy necessary. The genetic algorithm are theoretically and
empirically proven to provide robust search in complex space (Goldberg, 1989) and its potential for the reduced order
controller design is investigated in this work. In this work it is used the MATLAB genetic algorithm toolbox. This allows
to work easily with an algorithm already structured with a diversity of options to define the search process.
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2. H-INFINITY CONTROLLER DESIGN

The H-infinity controller design represents an approach that can be treated as optimization problem in the frequency
domain. It is used when levels of performance and stability against external disturbances needs to be ensured.

The H-infinity controller design looks for the reduction of the effects of external inputs and minimizes the frequency
response peak of the system.

Methods to solve the H-infinity controller design problem have been developed in the last decades, for examples, the
methods based on linear matrix inequalities, which make the full order H-infinity design as a convex optimization problem
(Boydet al., 1994).

2.1 H-infinity norm

The H-infinity design consist in reducing the infinity norm of the transfer function of the output performance with
respect to exogenous inputs, which represents the minimization of the frequency response peak of the closed loop system.
In case of multivariable systems, the frequency response diagram refers to the singular values diagram, and in the case
of single-input single-output systems it refers to the Bode diagram (Skogestad and Postlethwaite, 1996; Zhou and Doyle,
1998).

The H-infinity norm of the transfer function G(s) (SISO) is (Zhouet al., 1996)

‖G(s)‖∞ = supw|G(jw)| (1)

and the H-infinity norm of the transfer matrixG(s) (MIMO) is (Zhouet al., 1996)

‖G(s)‖∞ = supwσmax(G(jw)) (2)

whereσ(G(jw)) represents the singular values of the transfer functionG(s). σmax(G(jw)) is defined as (Skogestad
and Postlethwaite, 1996)

σmax(G(jw)) =
√

λmax (G∗(jw)G(jw)) (3)

whereλmax( ) represents the largest eigenvalue andG∗ denotes transpose and conjugate of the matrixG.

2.2 Output feedback H-infinity Controller

Consider the linear plant of ordern given by

ẋ = Ax+B1w +B2u (4)

z = C1x+D11w +D12u (5)

y = C2x+D21w +D22u (6)

with D22 = 0 without loss of generality since the result can be extended to the general case (Sánchez and Sznaier, 1998).
w is the vector of exogenous inputs,z is the vector of performance outputs,u is the vector of control inputs,y is the
vector of output measures andx is the state vector.

The transfer matrix of the plant given by Eq. (4), (5) and (6) fromw andz is defined as:

Pzw(s) = C1(sI−A)−1B1 +D11 (7)

Consider the linear output-feedback controllerK(s) given by

ẋc = Acxc +Bcy (8)

u = Ccxc +Dcy (9)

Thus, the control signal is given by

u = K(s)y, K(s) = Cc(sI−Ac)
−1Bc +Dc. (10)

From the state space model of the plant, Eq. (4), (5) and (6), and the controller, Eq. (8) and (9), the closed loop system
can be written as

ẋcl = Aclxcl +Bclw, (11)
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z = Cclxcl +Dclw, (12)

where:

ẋcl =

[

ẋ

ẋc

]

,Acl =

[

A+B2DcC2 B2Cc

BcC2 Ac

]

,Bcl =

[

B1 +B2DcD21

BcD21

]

, (13)

Ccl = [C1 +D12DcC2 D12Cc], Dcl = [D11 +D12DcD21] (14)

Thus, the transfer matrix of closed loop fromw andz is defined as:

Tzw(s) = Ccl(sI−Acl)
−1Bcl +Dcl (15)

The H-infinity optimal control seeks to find the admissible controllersK(s) (that internally stabilizes the system)
so that‖Tzw‖∞ is minimized (Zhou and Doyle, 1998), i.e. looks for to minimize, as much as possible, the frequency
response peak between exogenous input and performance output.

The H-infinity sub-optimal control design (Zhou and Doyle, 1998) looks for to find the admissible controllerK(s), if
it exists, so that, forγ > 0,

‖Tzw‖∞ < γ (16)

In search of the optimal admissible controllerK(s), γ is minimized until the condition of Eq. (16) is not satisfied, or
an unstable closed loopTzw is found. In other words, the controllerK(s) is optimum if solves the following optimization
problem (Zhou and Doyle, 1998):

min γ
s.a ‖Tzw‖∞ < γ

(17)

with ‖Tzw‖∞ stable.
This optimization problem is often used to obtain the full order controller (controller with the same order of the plant).

This can be solved using the formulations based on Riccati equations or LMI approaches (Boydet al., 1994; Skogestad
and Postlethwaite, 1996).

3. DIRECT MINIMIZATION METHOD FOR REDUCED-ORDER H-INFINITY CONTROLLER

The reduced-order control design can be based on the solution of the optimization problem presented in Eq. (17). The
linear controller shown in Eq. (8) and (9) can be of orderk ≤ n where each element of the controller matrices is an
optimization variable to be found.

To reduce the computational cost it is considered the following coordinate transformation:

xc = Txt (18)

Using the transformation Eq. (18) in the Eq. (19) and (20), the controller can be rewritten as

ẋt = T−1AcTxt +T−1Bcy (19)

u = CcTxt +Dcy (20)

Considering the first controller input signal (first column ofBc) as reference for the transformation, as presented in
(Kailath, 1980; Ogata, 2003), it is obtained:

T = [Bc1 AcBc1 A2

c
Bc1 ... Ak−1

c
Bc1] (21)

whereBc1 is the vector component of the input matrixBc with respect to the first input.
This transformation presents the controller in its controllable canonical form with respect to its first inputs as shown

in Eq. (22) and (23),

Ac =



















0 0 0 · · · 0 0 α1

1 0 0 · · · 0 0 α2

0 1 0 · · · 0 0 α3

...
...

... · · ·
...

...
...

0 0 0 · · · 1 0 αk−1

0 0 0 · · · 0 1 αk



















, Bc =



















1 β1,1 β1,2 · · · β1,j

0 β2,1 β2,2 · · · β2,j

0 β3,1 β3,2 · · · β3,j

...
...

... · · ·
...

0 βk−1,1 βk−1,2 · · · βk−1,j

0 βk,1 βk,2 · · · βk,j



















(22)

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 247



Cc =











c1,1 c1,2 c1,3 c1,4 c1,5 · · · c1,k
c2,1 c2,2 c2,3 c2,4 c2,5 · · · c2,k

...
...

...
...

... · · ·
...

ci,1 ci,2 ci,3 ci,4 ci,5 · · · ci,k











, Dc =











d1,1 d1,2 · · · d1,j
d2,1 d2,2 · · · d2,j

...
... · · ·

...
di,1 di,2 · · · di,j











(23)

wherej andi are the number of inputs signal and output signal of the controller respectively.
This controller state space model structure makes possible reducing the number of unknowns variables in the reduced-

order controller design. The optimization problem can be rewritten to ensure stability of both controlled system and fixed
order controller as follows:

minαk,βk,j ,ci,k,di,j
‖Tzw‖

∞

s.a max(real(λ(Ak)))< ǫ1
max(real(λ(Acl)))< ǫ2,

(24)

whereλ(·) represent the corresponding eigenvalues andǫ1 andǫ2 are negative values close to zero to ensure stability.
To improve the results one can include the following constraint to the optimization problem Eq. (24):

‖Tzw‖
∞

< ‖Pzw‖
∞

(25)

which means that the closed loop system should present a better H-infinity norm compared to the non-controlled system.
The optimization problem given by Eq. (24) and (25) is a nonlinear optimization problem that presents a complex

search space. For this solution the genetic algorithms are employed in this work exploiting its robustness in the search
process.

4. GENETIC ALGORITHM APPROACH

The genetic algorithms (GA) are a class of search method that use forms of biological processes such as selection,
inheritance, mutation and crossover. The GA can be used to solving optimization problems presenting the following
advantages with respect to others conventional search methods (Goldberg, 1989):

1. They work with a code to the parameter set, not with parameters values.

2. They are not limited by restrictive assumptions such as concerning to continuity, existence of derivaties, unimodality
and other matters.

3. They search from a population of points and not of a single point.

4. They use probabilistic transition rules and not deterministic rules.

These features make GA a potentially useful approach in the controller design of this work.
GA work simulating the behavior of the nature of the individuals. They work with populations of individuals that

representing a possible solution to the optimization problem. The individuals compete among themselves to produce the
next population where the natural selection depends on how good is the adaptation of the individual to the problem.

A simple GA use three operators to create the next generation from the current population (Goldberg, 1989):

1. Selection: Select the parents that contribute to the creation of the population of the next generation.

2. Crossover: Cross two parents to form the children of the next generation.

3. Mutation: Apply random changes to the parents to form the children.

The power of GA is their robustness, and it can be used successfully in a wide range of problem areas. GA are not
guaranteed to find the global optimum solution to a problem, but they can find an acceptably good solutions in a reasonable
time.

This work uses the MATLAB genetic algorithm toolbox (MATLAB, 2005). The command line ga is used allowing to
work easily on an algorithm already structured.

To set the features of the GA, it is defined the fitness functions (objective function) shown in the optimization problem
of Eq. (24). The constraints presented in Eq. (24) and (25) are also implemented and included in the function ga.

The default setting options of the function ga where the relevant information characterizing the algorithm with 20
individuals in each generation are used in this work. Maximum number of generations is 100. The tolerance in the
changes of the fitness function value before stopping is10−6. The selection process is made in the stochastic uniform
form (options@selectionstochunif). The crossover function, creates a random binary vector and selects the genes where
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the vector is a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and combines the
genes to form the child (options@crossoverscattered). A crossover fraction is 0.8. The mutation function used to create
the mutation children adds a random number taken from a Gaussian distribution (options@mutationgaussian).

With these considerations the optimization problem can be solved and a reduced-order H-infinity controller can be
designed.

5. APPLICATION EXAMPLE

The following linearized model of the F-8 aircraft presented in (Lublinet al., 1996) and often used with other methods
of reduced order H-infinity controller design (Apkarianet al., 2003; Calafioreet al., 2000) is used as an example here. The
plant includes the aircraft model and weighting functions to the treatment of wind disturbance rejection and unmodeled
dynamics.

A =

























0 0 1 0 0 0 0 0
1.5 −1.5 0 0.0057 1.5 0 0 0
−12 12 −0.6 −0.0344 −12 0 0 0

−0.852 0.29 0 −0.014 −0.29 0 0 0
0 0 0 0 −0.73 2.8289 0 0
0 0 0 0 0 −1.25 0 0
0 0 0 0 0 0 −1000 0
0 0 0 0 0 0 0 −1000

























, B1 =

























0 0 0
0 0 0
0 0 0
0 0 0

0.1146 0 0
4 0 0
0 1024 0
0 0 1024

























B2 =

























0 0
0.16 0.8
−19 −3

−0.0115 −0.0087
0 0
0 0
0 0
0 0

























, C1 =









1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0









, D11 =









0 0 0
0 0 0
0 0 0
0 0 0









D12 =









0 0
0 0

0.01 0
0 0.01









, C2 =

[

1 0 0 0 0 0 −139.0206 0
0 1 0 0 0 0 0 −139.0206

]

D21 =

[

0 142.8571 0
0 0 142.8571

]

, D22 =

[

0 0
0 0

]

The H-infinity norm of the non-controlled system is32.2424 dB. Using genetic algorithms and the plant model for
the solution of the optimization problem Eq. (24) and (25), reduced order controllers of order 2 and 1 are designed as
presented in the following sections.

5.1 Controller of order 2× 2

The controller obtained, using genetic algorithms, of order2× 2 is

Ac =

[

0 −0.6333
1 −2.14

]

, Bc =

[

1 −2.557
0 −0.3711

]

, Cc =

[

−0.3144 1.814
1.703 3.679

]

, Dc =

[

0.5834 −0.2051
0.1708 −0.9859

]

The H-infinity norm of the controlled system is2.9820 dB as shown in Fig. 1.
Implementing and using the LMI and Augmented Lagrangian method (LMI - AL method) (Apkarianet al., 2003), the

controlled system presented a minimization of the H-infinity norm of17.2419 dB as shown in Fig. 1. The comparison of
both method is shown in the Tab. 1.

The parameters used for the LMI and AL method were: update factor of the penalty parametersρ = 1.7, initial matrix
of the penalty parametersC0 = 10−8I, whereI is the identity matrix, initial matrix of the Lagrange multipliersΛ0 = 0

and convergence value of the non-linear constraintǫ = 10−5.

5.2 Controller of order 1× 1

The controller obtained, using genetic algorithms, of order1× 1 is

Ac = −1.054, Bc =
[

1 −4.454
]

, Cc =

[

0.3908
2.206

]

, Dc =

[

0.4708 −0.1175
0.6139 −0.8949

]
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Figure 1. Frequency response of the controlled system (Proposed method and LMI and Augmented Lagrangian method)
and the non-controlled system: controller of order2× 2
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Figure 2. Frequency response of the controlled system (Proposed method and LMI and Augmented Lagrangian method)
and the non-controlled system: controller of order1× 1

The H-infinity norm of the controlled system is4.9967 dB as shown in Fig. 2.
Using LMI and Augmented Lagrangian method, the controlled system presented a minimization of the H-infinity

norm of23.7834 dB as shown in Fig. 2.
The results were obtained on a laptop with intel core 2 duo processor (1 and 2: P7450 - 213 GHz) with 3 GB of

memory. The operating system used was Ubuntu 10.04 (Linux).
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Table 1. Main results of both methods: proposed method using genetic algorithm and LMI - AL method

Method Order of the controller Minimization of the H-infinity norm [dB] Computational time [s]
Proposed 2× 2 29.2604 178.2218

method (GA) 1× 1 27.2457 186.6126
LMI - AL 2× 2 17.2419 1591.6606
method 1× 1 23.7834 793.1117

6. CONCLUSION

The main idea of this work is to present a simple and intuitive method to the design of reduced order H-infinity
controllers. The method is based on the solution of a non-linear optimization problem to guarantee stability and good
performance of the system. The method exploited the advantages offered by genetic algorithms in the solution of complex
optimization problems.

The method was employed in the linearized model of a F-8 aircraft to the wind disturbance control and compared with
the LMI and Augmented Lagrangian method. The controllers designed presented a good minimization of the H-infinity
norm, close to the LMI and Augmented Lagrangian method, in a shorter processing time for this specific problem.

The proposed method and the LMI and Augmented Lagrangian method were implemented considering a particular
choice of parameters: selection function, crossover function, mutation function, tolerance and others for the proposed
method and penalty parameters, Lagrange multipliers, values of convergence and others for the LMI and Augmented
Lagrangian method. The appropriate choice of this parameters can lead to better results than those shown in this work.

The focus of this work was to present an alternative solution to the problem of reduced order controllers. The compar-
ison of the proposed approach with the method presented in (Apkarianet al., 2003) had the main purpose of validating
the results. To show superiority between the methods, further studies should be made on the appropriate choice of search
parameters.

Genetic algorithms have shown a good potential in the solution of the reduced order controller design. In the area of
control design based on the solution of optimization problems the study and use of genetic algorithms can be an attractive
alternative solution.

The solution approach has proved to be a good and simple design alternative which can be exploited to some classical
formulations based on Riccati and LMI approaches.
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