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Abstract. This paper presents the contribution of two verification techniques for a set of requirements in discrete event 
dynamics systems. The case study is an automatic coffee machine. The first approach consists of model checking using 
timed automata and the second one is the CoFI test method proposed for space software validation. In this study the 
CoFI approach is instantiated to mechatronics system characteristics. The purpose is the requirement refinement by 
the identification of problems using both techniques. After comparing the results of each one, the main problems 
detected by each technique are shown, the contributions of the techniques are highlighted and, then, the requirements 
which have errors are corrected. 
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1. INTRODUCTION 

 
Verification and Validation (V&V) are a key activity in the design of critical mechatronics systems. V&V can be 

defined as the process of assuring that a final product satisfies all the specified requirements under any possible 
circumstance of use. When the product under verification is a mechatronics system, there are a number of different 
approaches that can be applied, including simulation, formal verification, inspection, testing, documentation review, 
among others.  

In this context, this work compares two different verification approaches based on the system modeling as a 
Discrete Event Dynamic System (DEDS, Cassandras, 1993): (1) model checking and (2) model-based testing.  

The model checking approach is based on the system modeling as timed automata and uses the UPPAAL 
verification tool. The model-based testing uses the CoFI (Conformance and Fault Injection) methodology 
(Ambrosio,2006) and the Condado tool (Martins, 1999), which requires the modeling of the system behavior as FSM 
(Finite State Machines). 

Although the purpose of this comparison encompasses the entire development cycle of a mechatronics system, this 
paper focuses on the contributions of the two approaches for the review of the requirement specification. The purpose is 
to determine how the modeling processes of each approach can feedback and contribute to the review of the 
requirement documents. The results presented in this paper are derived from a simple and didactic example of an 
automatic coffee machine. However the conclusions can be qualitatively extended to complex systems. Currently, the 
same comparison is under development for embedded systems of space applications, such as on-board computers of 
satellites.  

This paper is organized as follows. The section 2 presents the engineering needed to specify the requirements. 
Section 3 details the concepts, the tools and the steps for the comparison techniques. Section 4 shows the case study of 
this paper and, the section 5 brings some conclusions of this work. 

 
2. REQUIREMENT ENGINEERING 

 
According to (Zave, 1997 aput Nuseibeh, Eastbrook, 2000) “Requirements Engineering (RE) is the branch of 

software engineering concerned with the real-world goals for, functions of, and constraints on software systems. It is 
also concerned with the relationship of these factors to precise specifications of software behavior, and to their 
evolution over time and across software families”.  

This definition highlights some of the important points of RE that are related to this work. The first is the 
identification of the real-world goals (capture of requirements), which includes its concretization into a list of 
requirements, usually described in informal language. The second point is the elaboration of precise specification of the 
software behavior, which means to translate the requirements into formal or unambiguous language that can guide the 
design (modeling and analysis of requirements).  

Although this definition came from software engineering it can also be used to mechatronics systems. The software 
of a mechatronics systems cannot be defined in isolation from its embedded system, as a result, the RE must start at a 
system level.  
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RE is a huge area of research. This work discusses the problem of analyzing a list of informal requirements of a 
mechatronics system and identifies if it has the following set of attributes: 

• Comprehensibility and lack of ambiguity: the requirements must be comprehended in the same manner by 
all parts involved. 

• Completeness: all system functionalities and all the system behavior must be described in the 
specifications. 

• Consistency: the specifications cannot have conflicting requirements. 
• Verifiability: to avoid future differences regarding concretization of the specified requirements, these must 

be described in a manner that could be possible to verify that they were concretized or not. In other words, 
if the final system corresponds to initial specification. 

 
The analysis and validation of the list of requirements must be performed in a manner that includes the following 

topics:  
• Evaluation of different system's situations during its life cycle; 
• Identification of constraints related to each requirement; 
• Identification of system's operational scenarios in its all operation modes; 
• Verification which confirms that the requirements set is consistent and not-redundant; 
• Acceptance of requirements' final set by the client. 

 
The completeness and consistency analysis of requirements has been the subject of a number of works. According to 

Lu et al (2008), in practice, requirement documents are still written in textual format using natural languages, and face 
problems such as ambiguities, inconsistency, imprecision, and incompleteness.  

Jaffe e Levenson (1988) discusses the concept of completeness. The authors understand completeness as being 
closed with respect to questions and inferences that can be made on the basis of information included in the 
specification. According to it, completeness requires that both the characteristics of the outputs and the assumptions 
about their triggering events have been specified. It also discusses the influence of timing abstractions, and the 
relationship among completeness, safety and robustness. The robustness of the resulting software system depends upon 
the completeness of the specification of the environmental assumptions, i.e., there must be no observable events that 
leave the program’s behavior indeterminate. 

Many works approaches the problem of checking properties in a formal specification. Examples are Yu et al (2008) 
and Heimdahl and Leveson (1996). 

Yu et al (2008) proposes an approach to check and correct inconsistencies. It uses a formal model based on first 
order logic to represent the specification of system requirements. Each scenario is described by a logic formula in terms 
of the event that triggers the scenario, a set of conditions for its occurrence, the action and update in the state objects 
that happen sequentially. According to this work, completeness is the presence of all event handlers or actions for 
condition guards of all events. Consistency is the relations among actions not conflicting/contradicting to those of 
condition guards and their allied events. The focus of this work is on how to automatically extract the scenarios from 
the formal specification and check consistency and completeness. Completeness analysis is performed by building a 
tree for the condition guards associated with a same event. Consistency analysis is performed according to the intra-
relations among condition guards and inter-relations with actions.  

In Heimdahl and Leveson (1996), the authors propose a method for automatically analyzing formal, state-based 
requirements specifications for some aspects of completeness and consistency. The work is adopts RSML (Requirement 
State Machine Language) as the modeling formalism. RSML is a hierarchical state-based language similar to 
Statecharts. The proposal is to perform the analysis directly on the RSML model without generating a global 
reachability graph. Heimdahl and Czerny (1996) also works with RSML. However, in this work the authors investigate 
how the Prototype Verification System (PVS) and its theorem proving component can help on the analysis when 
compared with the BDD (Binary Decision Diagrams) approach of the previous work.  

Other works are focused on the formalization or semi-formalization of an informal specification of requirements. 
Lu et al (2008) present MRO, which is na object-oriented requirement editor to support requirement document 

modeling and model-driven document editing. This editor also can help linking to artifacts of other phases of software 
life cycle, such as UML diagrams in analysis and design phases and source codes, and assist consistency enforcement. 

Sheldon et al (2001) present a case study performed for validating a natural language based software requirements 
specification in terms of completeness, consistency and fault-tolerance. It approaches the transformation from natural 
languge to formal language (statecharts) using the Zed notation, which is a mathematical language with a theory of 
refinement between abstract data types. Validation is achieved via symbolic simulation of the statechart model. 

Finally, Chechik and Gannon (2001) approach the problem of verifying if the properties expressed in formal 
requirement specifications are preserved in other software life cycle artifacts. According to it, the existing techniques 
either require substantial manual effort and skill. In order to solve this problem, the paper relates on SCR language with 
detailed design artifacts. 
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3. THE TWO VERIFICATION APPROACHES 
 
The two verification approaches considered for comparison in this work are detailed in the next sections. 
 

3.1. Model Checking and the UPPAAL tool 
 
The first verification approach is based on the system modeling as timed automata and the UPPAAL model checker. 

A timed automaton is a finite-state machine extended with clock variables (Allur, Dill, 1994). It uses a dense-time 
model where a clock variable evaluates to a real number. The clock values progress with the same time rate. These 
values can be reset but cannot be stopped. Timed automata are used to model real-time systems such as landing systems 
in aircrafts, industrial processes, communication protocols, etc. 

Model checking is a method for verifying requirements in finite state systems, which can be modeled as timed 
automata. The requirements are expressed as logic formulas, which are submitted to model checker. The model checker 
uses efficient algorithms to traverse the model and check if the requirement holds or not. It then returns a YES or NO 
answer, indicating that the requirement is either true or false. If the requirement is not satisfied, the model checker can 
provide a trace with the requirement violation. Another possible answer of the model checker is memory fault, which 
indicates that the model checker could not reach a conclusion about the requirement. 

In this work, the UPPAAL model checker is used (Behrmann et al, 2004). UPPAAL is a toolbox for validation and 
verification of real-time systems. These systems can be modeled as networks of timed automata. This toolbox consists 
of two main parts: a graphical user interface and a model-checker engine. Also, it has three components on its interface: 
the editor, the simulator and the verifier. The editor is where the models are developed. The simulator is used to 
simulate and make a preliminary verification of the model. The last one is the verifier, which has the model-checker 
engine is used to verify CTL (Computational Tree Logic) formula for the model. 

In order to model a system in UPPAAL, it is important to know what are guards, synchronizations and invariants in 
timed automata. A guard is an expression associated to the transitions and it specifies in what conditions a transition can 
occur. Synchronization is a label either on the form “Expression!” or “Expression?” or is an empty label. The 
expression must be side-effect free, evaluate to a channel, and refer to integers, constants and channels. Channel 
variables are responsible for synchronization between two, and only two, automata with labels described above. 
Another type of variable used is the broadcast channel. In a broadcast synchronization one sender “Expression!” can 
synchronize with an arbitrary number of receivers “Expression?”. If there are no receivers, then the sender can still 
execute the “Expression!” action, i.e. broadcast sending is never blocking. Finally, an invariant is an expression that is 
associated to states. It defines the conditions which can remain on the current state. It forces the event occurrence.  

 
3.2. COFI testing methodology 

 
The CoFI testing methodology consists of a systematic way to create test cases for reactive systems. The system to 

be tested is modeled in Mealy-type machines. In the COFI the  system behavior is partially represented in state models 
where transitions represent inputs and outputs of the interfaces.  

In order to create simple models, the COFI first requires the identification of a set of services the system provides, 
then the precise definition of the system interfaces. To each service different models (represented in state diagrams) are 
created. These models represent the behavior of the system under the following kind of inputs arriving: (i) normal, (ii) 
specified exceptions, (iii) corrects but in wrong moments and (iv) inputs caused by hardware failures.  

One may say that the complexity of modeling the complete system behavior is decomposed in simple models that 
take into account both: (i) the provided services and (ii) the types of behavior under classes of inputs, which are named 
as: (i) Normal,  (ii) Specified Exception,  (iii) Sneak Path and (iv) Fault Tolerance.  

The COFI testing methodology encompasses a set of steps necessary to develop the state diagrams of the each 
behavior type. The main steps are shown as follows: 

 
Step 1. Identification. It is necessary to identify: 

1. The services that a user recognizes. 
2. The hardware faults that can occur (and that the system shall resist).  
3. The facilities/constraints of the Test System and the Control and Observation Points (COP), physical and 

logical addresses, etc. 
4. The events (commands) and the reactions (responses) of the system.  

 
Step 2. Creation of Partial Models. For each service it is necessary to define at least the following models: 

2.1 Normal(s) Model(s): 
• Define a normal behavior model of the service, taking into account event sequence that the SUT normally 

stands by in an operational routine. 

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.374-383
Copyright © 2010 by ABCM



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

• Identify the (normal) events and expected actions for this operation. If this information is not within the 
documentation, the tester shall request it.  

2.2 Specified Exception Model(s): 
• Survey the exceptions that were mentioned in the documentation (what happens whether timings are exceeded, 

whether wrong commands are sent instead the correct ones, etc.). 
• Identify the events and expected actions in this context (thus defining the exceptions events).  
• Take a model of normal behavior of the service (defined in the step above) and change it: (i) including the 

exceptions events in new transitions, and (ii) excluding the known paths in step above, but keeping the 
connected model, with the same initial and final states. 

2.3 Sneak Path Model(s): 
• Take a normal model and write it in Event X States table.  
• Identify the blank cells of the table. 
It is necessary to modify the normal model: (i) including the events in states where they do not exist, and (ii) 

excluding the known paths in steps above. 
2.4 Fault Tolerance Model(s):  
• Identify the hardware faults and define the corresponding fault events; 
• For each hardware type fault, take a model of normal behavior of the service and modify it: (i) including the 

fault events in new transitions, and (ii) excluding the known paths in step above, but keeping the connected 
model, with the same initial and final states. 

 
Step 3. Automatic Generation of Tests:  

After the creation of the partial models, each model is submitted to a tool that is able to “tour” the model, such as the 
Condado tool. The tool then generates a set of test cases from each model. A test case means a sequence of inputs and 
their related output comprising the transitions of a tour. The COFI test case set is the union of the test case set generated 
from each model.  

This step is not used in this work, as this paper is limited to the contribution of the model generation process to the 
requirement refinement. 

 
3.3. The Requirement Refinement Approach 

 
The approach used in this case study is illustrated in Fig. 1 and is organized in six steps. The activities were divided 

among three teams in order to achieve unbiased results. In the first step, Team 1 elaborated a description of system and 
listed the requirements of the software under design. Based on the requirement document provided by Team 1, Team 2 
modeled the system behavior using timed automata and UPPAAL (Step 2). It then verified the model using simulation 
and model checking techniques (Step 3). Each requirement of the requirement specification was mapped into a set of 
properties that the model must verify.  

Meanwhile, Team 3 used the CoFI methodology to elaborate the test cases from the document made in step 1 by the 
Team 1 (step 4). Then, the problems identified by each team in the specification of requirements are compared and 
discussed. Based on the discussion results, the requirements are refined (Step 5). After this refinement, the 
documentation is updated and provided to the next steps of the system design (Step 6).  

The next steps include the generation of a software product using the UPPAAL models and the application of the 
test cases. These steps are out the scope of this paper and are detailed in (Pastl et al, 2009).  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1.Steps in the comparison approach. 

1 – Specification of Requirements

 2 – UPAAL Modeling 

  5 – Requirements Refinement 

Next Steps... 

 4 – Specification of the Tests Set (CoFI) 

 3 – Formal Verification 
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4. THE CASE STUDY 
 

4.1. The Coffee Machine Example 
 
The system used as case study is an automatic coffee machine which offers to the user the possibility of choosing 

between three different types of coffee drinks (pure coffee, milk coffee and cappuccino) and two options for the amount 
of sugar (with sugar, no sugar). To order a drink, the user must insert a token, make his choices in the right sequence 
and wait the order processing. After process is finished, the drink is available to user in an appropriate support. 

This coffee machine system can be described as a mechatronics system, as illustrated in Fig. 2.According to this 
figure, the embedded system (control device) interacts with the environment through a cup sensor, level sensors and 
valves (sensors and actuators). Moreover, the embedded system interacts with the user (the person who orders a drink) 
by means of buttons, an entrance for a token and LEDs (command and monitoring devices).  

 

 

Figure 2.Conceptual basic diagram for a coffee machine system. 

The embedded system computes the signals provided by sensors and buttons. According to the implemented logic, 
the embedded system modifies the state of the valves. In addition, it informs the user about the current state of the 
system by indicative LEDs. 

The command devices are composed of a set of six buttons and an entrance for tokens. Five buttons are push-
buttons and one is an on/off retention button, which is responsible for turning on and turning off the machine.  

The monitoring devices are a set of nine indicative LEDs that show the state of the machine and the choices made 
by the user. Also, the machine has one level sensor for each four basic drink components (coffee, milk, chocolate and 
sugar). These are discrete sensors and they only indicate the presence or the absence of a minimum level of the 
components in the machine reservoirs. Furthermore, the machine has a sensor that indicates the presence of cups in the 
stock and another sensor that indicates the presence of a cup in the support. 

 
4.2. The System Requirements 

 
The coffee machine requirements were elaborated in textual form. There are 14 requirements for describing the 

machine behavior from the point of view of the user. They are: 
 

• R1 – The machine controller is turned on only when the on/off button is pressed.  
• R2 – Whenever the machine controller is turned on, it must verify if there is any cup in the stock of cups and if the 

sensors of the coffee, milk and chocolate reservoirs indicate that there are enough components to produce any 
drink. When there are enough component and cups, the controller can accept a token, otherwise it must not accept 
any token until the component is replaced.   

• R3 – After a token is inserted in the machine, the machine controller must accept only the following commands in 
the following order: choice of drink (coffee, milk-coffee or cappuccino), choice of amount of sugar (no sugar or 
with sugar). 

• R4 – If the user provides a not expected command, the machine controller must remain in the current state. In other 
words, the machine controller should not respond to a not expected command.  

• R5 – The processing of any order cannot be aborted. Once a token is inserted, a processing cycle must be 
concluded to return to the initial state. 

• R6 – After a token is inserted, the machine controller cannot accept another token until the current order 
processing is finished. 

• R7 – As the choices are made by the user, the LEDs related to the chosen options must be turned on. 
• R8 – When an order processing is finished, an indicative LED (LedCoffeeReady) must be turned on warning the 

user that the order processing is finished. This LED should be turned off only when the cup is removed from the 
support. 

• R9 – When the cup is removed from the support after an order processing is finished, all LEDs must be turned off, 
except the On/Off indicative LED. 

User 

Buttons 
and token 
entrance 

LEDs 

Embedded 
System  

Valves 

Level and cup 
sensors 

Drink 
production 

Coffee Machine System 
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• R10 – After all LEDs have been turned off due to the remotion of the cup from the support when the order 

processing had been finished, the presence of the basic drink components must be checked. If at least one of these 
components is missing, the machine controller cannot accept the insertion of a token until this missing basic 
component is replaced. 

• R11 – If the machine controller is turned off before the effective processing starts, when it is turned on again, it 
must go to the initial state. In this case, the user loses this token and the current order is aborted. A new order can 
be requested after the insertion of a new token. 

• R12 – The machine controller will always demand ten seconds to process the requested order (this is the time 
between the last choice made and the order being available to be consumed). 

• R13 – If the on/off button is turned off while the drink is under preparation, the machine controller should continue 
in operation and finalize the drink preparation. Only after the drink is ready and available to the user, the 
controller is turned off. 

• R14 – When the machine controller is turned off, the indicative LED of “machine turned on” must be turned off. If 
there are any other LEDs turned on, all of them must be turned off. 

 
4.3. Modeling and Verification in UPPAAL 

 
The model developed in UPPAAL encompasses not only the behavior of the machine controller software but also 

the behavior of the process and the machine devices. It is composed of seven templates that model a generic user, the 
machine buttons, sensors and controller, and a simplified drink production process. Except the controller, all the models 
are basic and simple, with two or a few states.  

A template in UPPAAL is an automaton which is defined with a set of parameters that can be of different type (e.g., 
int, chan). These parameters are substituted for a given argument in the process declaration. The idea of using templates 
is because there are several processes that are very similar. In this case, the model of the system can be easily composed 
by making several instantiations of the template (similar to the instantiation of objects from a class in Object Oriented 
languages).  

For instance, the template sensor defines the behavior of the sensors used to detect the basic components of the 
coffee drink in their respective reservoirs and the presence of the cup. There are five instances of this template, which 
models the sensors for coffee, milk, chocolate, sugar and cup. The sensor template is shown in Figure 3. The variable 
“id_sensor” is the sensor template parameter used to select a specific sensor. This parameter is set by the controller 
when it wants to read a sensor. 

 
Figure 3.The sensor template. 

Another example is the controller template. It has only one instance, which is the coffee machine controller. The 
template models the behavior of the control system designed for this application and is shown in Fig. 4.  

The user template models the actions that can be made by the person who makes an order. Figure 5 shows this 
template. Note that the user model considers that the user can press any button at any time in any order. All the 
commands are modeled as broadcast channel and can be ignored by the controller when are not expected.  

The model verification is organized in three activities:  
1. Simulation, which encompass random simulation and specific scenarios. This step detects most of the model errors.  
2. Verification of expected properties that are not specifically related to requirements, such as absence of deadlock 

and reachability of key states.  
3. Verification of requirements, i.e, the definition of properties in CTL that are related to the requirements and its 

verification. 
Among the three steps, the most critical is the last one. The requirements are defined in informal language and there 

is no rule to translate to CTL formulas. The following approaches were used:  
• The requirement can be translated directly to one or a few CTL formula. The verification of the requirement is the 

proof of the CTL formulas.  
• The requirement is verified by inspection of the model. 
• The verification of the requirement is decomposed in the proof of a CTL formula and a visual inspection of the 

model. 
• The verification of the requirement is proved with a modified user model, which may have a particular behavior.  
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Figure 4.The template for the control system. 

 
Figure 5.The user template. 

 
For instance, in order to verify the requirement R3, the user model in Fig.5 above was replaced for the user model in 

Fig.6, where the broadcast channels are modified to normal channels: Option_Pure_Coffee, Option_Coffee_Milk, 
Option_Cappuccino, Option_With_Sugar, Option_No_Sugar. This new template assumes that the events related to the 
choices of type of drink and amount of sugar can only occur when processed by the machine controller. Furthermore, 
the user model is modified to that any command sequence that is not defined in requirement R3 takes the user to 
Deadlock_User state. Therefore it is possible to verify that the Controller accepts only the specified command sequence 
because the Deadlock_User state is not reached.  

 
Figure 6.The user template for requirement R3. 

4.5. Contributions of Model Checking for Requirements Review 
 
When using the UPPAAL modeling and the model checking, it was possible to identify that there are problems 

related to consistency, ambiguity and completeness among requirements. It was also possible to identify critical cases of 
completeness, which could lead to bad functioning of the machine. These detected problems are listed below.  

Inconsistency problems are related to possible conflict among the requirements. The following inconsistency 
problems were identified: 
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• There are contradictions among requirements R3, R4 and R11 regarding unexpected commands. Requirements R3 

and R4 say that after the token is inserted and before the choice of the amount of sugar, the machine controller 
cannot process any command that is not in the requested order. However, according to requirement R11, the 
machine controller should accept that the machine controller could be turned off. 

• The requirements R5, R8, R9, R10 and R12 are in conflict regarding to the concept of the end of an order 
processing. The requirement R5 says that the end of the order processing is given when a new order can be 
requested. The requirements R8 and R12 specify that the end of the order processing occurs when the LED 
CoffeeReady is turned on, i.e., the end of the ten seconds. However, the requirements R9 and R10 bring that the 
end of the order processing occurs when the user removes the cup from the support and all LEDs are turned off. 

• There are contradictions among requirements R5, R6, R11 and R12 regarding the concept of when an order 
processing starts. The requirements R5 and R6 show that the start of the order processing is given when a token is 
inserted, but the requirements R11 and R12 say that the order processing starts occurs right after the choices are 
made, and it corresponds to the beginning of ten seconds. 

 
Ambiguity problems are detected when a term is used and lead to different interpretations. They are detected in 

requirement R11.  
• The requirement R11 does not define what EFFECTIVE product process is. So, it could either start after the token 

is inserted or after the last choice made by the user. 
• The requirement R11 does not define what the machine’s initial state is. Then, the initial state could be any of the 

states of the machine controller model.  
 
Finally, completeness problems are related to information that is missing in the requirements. Some details about the 

system behavior were left over the interpretation of the developer. Completeness problems imply on the creation of new 
requirements that completely defines the system behavior. Team 2 suggested the inclusion of the following 
requirements. The name RNUx stands for Requirement - New for UPPAAL x, where ‘x’ is the number of the new 
requirement.  
• RNU1: The “on” LED is turned on when the On/Off button is pressed. 
• RNU2: The processing LED is turned on immediately after or simultaneously with the LED related to last choice of 

the user (amount of sugar). 
• RNU3: The processing LED is turned off at the end of the ten seconds. 
• RNU4: The machine controller must be turned off when the On/Off button is unpressed in any case, except for what 

was fixed by requirement R13. 
• RNU5: In the case the On/Off button is unpressed during the order processing, the machine controller must wait 

for the removal of the cup by the user before it is turned off. 
• RNU6: After a token is inserted in the machine and before it concludes the ordering choices, the machine 

controller must also accept the turning off command. In the case of the user has inserted a token, it will be lost. 
 
One critical problem regarding completeness was detected in requirement R2. In this case, there were errors which 

lead the machine controller to process an order in the wrong manner or even to release a new cup on another cup that is 
still in the support. These problems are related to not checking the sugar sensor and the cup sensor in the support. As a 
result the following requirements are specified by Team 2 to be added to the requirement specification: 
• RNU7: The sugar sensor should also be checked whenever the system is started and when an order processing is 

finished.  
• RNU8: The support cup sensor should also be checked whenever the system is started.  

 
4.6. The COFI Models to generate Test Cases 

 
The identified services were: (1) produce a cup of coffee; (2) produce a cup of cappuccino, (3) produce a cup of 

milk-coffee. Seven models were designed to each service. Figures 7 and 8 show the Sneak Path and Fault Tolerance 
models for the Service 1.   

 
4.7. Contributions of COFI for Requirements Refinement 

 
The application of COFI methodology for requirements refinement led to identify problems related to completeness 

among requirements. Team 3 suggested the completing of the following requirements: 
• R1: The machine has a button to turn on and another button to turn off.  
• R2: Whenever the machine controller is turned on, the presence of sugar shall be checked. If there is not enough 

amount of sugar, the machine controller shall not accept the insertion of a token. 
• R4: Command means to push a button (on/off, pure coffee, milk-coffee, cappuccino and sugar). 
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Figure 7.Service 1 - Sneak Path Model   Figure 8.Service 1 - Fault Tolerance Model 

 
• R6: The meaning of “Order Processing is Finished”, which is not mentioned in R6, is specified in R9 as “Cup 

Remotion”.  
• R9: The machine controller only allows the release of the cup after the order processing is finished. The user does 

not have any access to the cup before its release. 
• R11: The machine initial state is “Verify Products”. The phrase “A new order can be requested after the insertion 

of a new token” was removed. 
 

In addition, Team 3 suggested the creation of the following was created a new set of requirements to make possible 
the development of the needed FSM. In total, seven new requirements were added. The name RNCy stands for 
Requirement - New for COFI y, where ‘y’ is the number of the new requirement.   
• RNC1- The failure of the products sensors (coffee, milk, chocolate, sugar, cup) and token leads the machine 

controller to a fault state, disabling its operation.  
• RNC2- The failure of the option buttons (coffee, cappuccino, coffee-milk, amount of sugar) disables the machine 

controller operation. 
• RNC3- The failure of the Turn On button blocks the machine controller operation. 
• RNC4-Verify the presence of the products (see definition of products in RNC1) after pushing the Turn On button 

and after the cup has been removed.  
• RNC5-The machine controller leaves the fault state when is turned off. 
• RNC6- The failure of token’s sensor disables the machine controller operation.  
• RNC7-The failure of sugar button allows the order processing with no sugar. 

 
5. CONCLUSION 

 
This paper discusses the contribution of two verification approaches to the refinement of the requirement 

specification of mechatronics systems. The first approach consists of model checking using timed automata and the 
second one is the CoFI test method proposed for space software validation. A simple example of an automatic coffee 
machine is used in the comparison. Comparing the results of both techniques, it is realized that the contributions of the 
two approaches are complementary.  

The main contributions of model checking are: 
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• The system modeling for model checking requires the modeling all the devices that interacts with the controller, i.e, 

command devices, monitoring devices, actuators and sensors. As a result, the completeness problems related to the 
specification of conditions for event transitions of the devices are detected. Examples are the missing information 
about when a LED is turned on or off.  

• Ambiguity problems are detected when the CTL formulas associated to each requirement is specified. Usually, in 
order to define a formula, the textual terms that appear in the requirement description should be mapped into 
automata state and transitions.  

• Inconsistency problems are detected when expected properties of the system are FALSE, such as not having 
deadlock. They are also detected when a CTL formula that should be TRUE is actually FALSE.  

Three points are highlighted by the COFI methodology: 
• By having the characteristic of forcing the inputs and the outputs in models development, this methodology leads 

the requirements to be written in a testable form. 
• In Sneak Path models, this methodology forces the requirement specification to operational faults; and 
• Regarding hardware faults, this methodology forces some definitions which the requirements should have when 

hardware faults occur.  
Concluding, while model checking detects different classes of problem (ambiguity, inconsistency and 

completeness), the CoFI methology is limited to completeness, but identifies a larger number problems in the 
requirements specification. Future works are related to the application of the two verification approaches for the on 
board data handling software of satellites.  
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