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Abstract. Piezoelectric materials generate displacements when an electric potential is applied and, electric potential 
when they are subjected to forces or pressure. Functionally Graded Materials (FGM) are composite advanced 
materials, which are made by changing gradually the properties with position inside material domain. The application 
of FGM concept to piezoelectric transducer design allows designing composite transducers without interface between 
materials (e.g. PZT and Aluminum), due to the continuous change of property values. Thus, large improvements can be 
achieved, as reduction of stress concentration, increasing bonding strength and fatigue-lifetime. Recent works about 
piezoelectric FGM show lack of computational methods to model these transducers and evaluate their performance 
considering property gradation function, futhermore, FE comercial softwares have no “tools” to simulate graded 
continuous materials for while. Thus, this work proposes the development of Finite Element (FE) algorithms to model 
FGM piezoelectric ceramics and to explore the FGM potential on piezoelectricity field. The continuous change of 
piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept, where these 
material properties are interpolated inside the finite element using the FE shape functions. A software based on 4-node 
graded finite element (Q4) is implemented. Dynamic and static analyses are performed. In the examples, the material 
properties are graded along thickness direction to illustrate the influence of gradation on the output displacements, 
vibration modes, and resonance frequencies. These examples are compared with results of a homogeneous 
piezoceramic to show FGM advantages.  
 
Keywords: Graded Finite Element, Functionally Graded Material, Piezoelectric ceramic, Dynamic Performance, 
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1. INTRODUCTION  

 
Piezoelectric materials have the property to convert an electrical energy (electric field and electric potential) into a 

mechanical energy (stress and strain) and vice-versa. Examples of piezoelectric materials include quartz, ceramics 
(PZT) and polymers (PVDF). Its main applications are in sensors and electromechanical actuators, as resonators in 
electronic equipment and acoustic applications, as ultrasound transducers, naval hydrophones, and sonars. Ultrasound 
transducers are used in medical imaging (Akhnak et al., 2000) and non-destructive tests. Other applications include 
pressure sensors; piezoelectric actuators for the structural vibration control; performance of nanopositioning and 
micromanipulation devices as: electronic microscopy instruments; laser interferometry; cell manipulation equipment; 
microelectromechanical systems "MEMS"; nanotechnology and precision mechanics equipment (Kögl and Silva, 2005). 
A brief review of piezoelectric applications is offered by Newnham and Ruschau (Newman and Ruschau, 1991). 

In order to improve the conventional piezoceramic performance (single and homogeneous materials) are fabricated 
as piezocomposite materials. However, the interface between materials produces an uneven distribution of stresses 
which reduces the electric-field-induced displacement characteristics, reliability and lifetime. Other modern approach is 
to change the piezoelectric properties of ceramic disk through its thickness, specifically, to reduce one echo wave of 
two produced in each piezoceramic surface and to increase the induced piezoelectric stress gradient. Functionally 
Graded Material concept has arisen as a solution to reduce the ultrasonic wave generated at one piezoceramic surface 
(Yamada et al., 1998; Ichinose et al., 2004; Samadhiya and Mukherjee, 2006). 

Functionally Graded Materials (FGM) are materials that possess continuously graded properties with gradual change 
in microstructure (Hirai, 1996; Suresh and Mortensen, 1998). The materials are made to take advantage of desirable 
features of its constituent phases. For instance, in a thermal protection system, FGMs take advantage of heat and 
corrosion resistance, typical of ceramics, and mechanical strength and toughness, typical of metals. A soft property 
variation supplies advantages such as stress concentration reduction (Suresh and Mortensen, 1998), since they do not 
present interface among inclusion and matrix materials, therefore, it reduces a common problem in composite materials, 
the crack arising or damages in these interfaces. Specifically, in Functionally Graded Piezoelectric (FGP) ceramics, the 
conventional and homogeneous piezoelectric material is replaced by a functionally graded piezoelectric one, see Fig. 1. 
Therefore, all or some properties vary along a specific Cartesian direction, usually along thickness. Several gradation 
functions can be used, see Fig. 1. Thus, if the piezoelectric properties change from low to high values, only one 
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ultrasonic wave is radiating, and larger piezoelectric stress gradient together with short-time waveform are obtained 
(Yamada et al., 1998). 

Some studies have been reported since 1960s about the advantages of wave generation by FGP transducers (Mitchell 
and Redwood, 1969); nevertheless, these studies have been highly increased since last 1990s (Wu et al., 1996). These 
works focused in two ways: FGP ceramic fabrication and modelling. FGP ultrasonic transducers can be constructed by 
forming a number of fine V-grooves on one surface of an active element (Yamada et al., 1998), or U-grooves (Guo et 
al., 2005); by applying an appropriate temperature gradient in the thickness direction of a polarized piezoceramic with 
low Curie temperature (Yamada et al., 2000); and by sintering a layer-structured ceramic green body without using any 
adhesive material (Ichinose et al., 2004). On the other hand, FGP ultrasonic transducer can be modelled: (i) by using 
one-dimensional analytical techniques, such as equivalent network analysis of piezoceramic disk, exploring linear and 
exponential gradation functions for thickness vibration modes (Yamada et al., 2001; Yamada et al., 1999); (ii) by using 
two-dimensional multilayer numerical techniques (Rubio, et al., 2007).  
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Figure 1. Sketch of a traditional (non-FGP) piezoelectric ceramic and of a FGP piezoceramic disk 
 
Although all works show that the effectiveness of piezoelectric property gradation generates better performances, 

the modelling is reduced to one-dimensional or multilayer approaches. Former approach neglect lateral vibrations of 
ceramic disk, and in last one, the gradation functions are not continuous; on the contrary, they are discrete functions. In 
view of this idea, this work contributes to developing a Graded Finite Element (GFE) implementation for FGP ceramic 
disk modelling. This computational implementation allows simulating two-dimensional FGP disks with continuous 
material gradation. The code is implemented by using the MATLAB™ software. It will be considered that the 
properties varies along the thickness direction, and the FGP results are compared with non-FGP ones.  

The paper is built up as follow: first, it is described the GFE formulation of piezoelectric ceramic disks. Then some 
results and testing of code are presented, and finally, some conclusions are given. 

  
2. GRADED FINITE ELEMENT FOR PIEZOELECTRICITY 
 

The constitutive relationships describing the electrical and mechanical interactions for piezoelectric material are 
given as (Naillon et al., 1983): 
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where, T is the stress tensor (second order); S is the strain tensor (second order); D is the electric displacement vector; E 
is the electric field vector; EC is a fourth order elastic tensor and its components are evaluated by constant electric 
field, Sε is a second order dielectric tensor under constant strain, and e is a third order piezoelectric tensor where T 
indicates transpose. 

The piezoelectric model is completed by considering the mechanical balance expressed by the Newton’s equation 
for continuous media; the electrical balance corresponds to the charge balance expressed by Gauss’s theorem; and the 
strain and electric field expressions. The mechanical balance is given by: 

 

TU
⋅∇=

∂
∂

2

2

t
ρ                  (2) 

 
where, ρ is the density of material, t is the time, U the displacement vector, and ∇ the divergence operator. The 
electrical balance is given by: 
 

0=⋅∇ D ,                         (3) 
 
and respectively the strain and electric field expression by: 
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where, ϕ  is the electric potential and ∇̂ is the symmetric gradient operator expressed by (Naillon et al., 1983): 
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The finite element piezoelectric equilibrium equations can be written based on variational principle by using the 

constitutive piezoelectric equations, Eq. (1) up to Eq. (5). These equations are written in terms of displacement (U) and 
electric potential (Φ) vectors at nodal points. Also, the FE equations are written by using the nodal mechanical force (F) 
and electric charge (Q) vectors as (without structural damping) (Naillon et al., 1983): 
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where, Muu, Kuu, KuΦ, and KΦΦ are the mass, elastic, piezoelectric and dielectric matrices. However, in the case of FGP 
ceramic disks the properties change continuously inside the piezoceramic domain, which means that the matrices of Eq. 
(6) must be described by some continuous function of Cartesian position (x, y) into the ceramic disk. Thus, the matrices 
of Eq. (6) are expressed as: 
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where, Nu are the shape functions for the displacements; and Bu and BΦ are the strain-displacement and voltage-gradient 
matrices, respectively. According to the theory of conventional finite element, the matrices and vectors of piezoelectric 
constitutive equations result from assembling the vectors and matrices of the single elements.  
 

Y

X

Node

Property (X,Y)

(b)

Node

Property 
(constant)

(a)

Y

X

Y

X

Node

Property (X,Y)

Node

Property (X,Y)

(b)

Node

Property 
(constant)

(a)

Node

Property 
(constant)

(a)  
 

Figure 2. Properties at the element level. (a)  Homogeneous Finite Element (HFE); (b) Graded Finite Element (GFE) 
 

To treat the homogeneous material simulations, it is used the traditional Homogeneous Finite Element (HFE) with 
constant material properties at the element level, which are evaluated at the centroid of each element; see Fig. 2(a). On 
contrary, for FGP ceramics, the Graded Finite Element (GFE) is implemented, which incorporate the material property 
gradient at the size scale of the element (Fig. 2(b)). Kim and Paulino (2002) and Santare and Lambros (2000) developed 
the graded element concept with slightly different formulations. Both studies demonstrated that graded elements result 
in smooth and accurate change of properties for static problems. In this work, the scheme developed by Kim and 
Paulino (2002) is extended to piezoelectric materials considering dynamic and static analysis. In FGP ceramics, the 
GFE concept employs the same shape functions to interpolate the unknown displacements and electric potential, the 
geometry, and the material parameters. The interpolations for spatial coordinates (x, y), nodal displacements (u), nodal 
electric potential (ϕ) and material properties (ρ, CE, e, εS) are given by: 
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- Elastic, Piezoelectric and Dielectric properties: 
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respectively, where m is the number of nodes per finite element. Also, when GFE is implemented, the material 
properties must remain inside the matrices integrals (see Eq. (7) up to Eq. (10)) and must be integrated; in 
Homogeneous Finite Elements (HFE), these properties are not integrated.  

 
3. IMPLEMENTATION 
 

The GFE for piezoelectricity is implemented by using MATLAB™ code. Two-dimensional four-node quadrilateral 
finite elements (Q4) for FGP ceramic disks are used in this work, each one with three degrees of freedom: two 
mechanics (horizontal and vertical displacements), and one electric (electrical potential). Thus, a fully isoparametric 
formulation is developed in the sense that the same shape functions are applied to interpolate the unknown 
displacements and electric potentials, the geometry, and the material properties. Therefore, the actual variation of the 
material properties may be approximated by the element interpolation functions (e.g., a certain degree of polynomial 
functions).  

Three analyses are implemented: Static, Modal, and Harmonic. In static analysis the software solves the following 
equation system: 
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In modal and harmonic analyses no damping is considered in the dynamic problem. In modal analysis the 

eigenvalues and eigenvectors are found solving the second-order systems: 
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where, ω  is the natural frequency. On the other hand, harmonic response analysis seeks the system response when 
prescribed loads vary sinusoidally with time. Because MATLAB is able to manipulate complex numbers, the harmonic 
response calculation is based on direct method, in this case the harmonic response equation can be written in the form: 
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where, Û and Φ̂ are complex magnitudes, respectively, of displacements and electric potentials. F̂ and Q̂  are complex 
magnitudes of mechanical and electrical inputs, respectively. All these complex magnitudes depend on frequency Ω. 
 
4. NUMERICAL RESULTS 
 

In this section some results based on GFE implemented with MATLAB are shown. Three analyses are performed: 
Static, Modal and Harmonic. When homogeneous piezoceramic is simulated only one material is used, in this 



 

homogeneous case is used the PZT-5A properties. On contrary, when FGP ceramics are simulated a gradation function 
is used to represent the continuous change of material properties along thickness. The properties of PZT-5A are shown 
in Table 1.   

 
Table 1. Material properties for PZT-5A ceramic. 

 
Elastic Constants (N/m2) Piezoelectric Constants (C/m2)  Dielectric Constants 

c11  = 12.1 x 1010 
c13  = 7.52 x 1010 
c33  = 11.1 x 1010 
c44  = 2.11 x 1010 

 

e13  = -5.4 
e13  = 15.8 
e15  = 12.3 

 

ε0 = 8.854188 x 10-12 F/m 
ε11 = 916 x ε0 
ε33 = 830 x ε0 
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Figure 3. Model used for numerical results. (a)  Model for static analysis; (b) Model for modal and harmonic analyses 
 

In Table 1 ε0  is the permittivity of free space. The density ρ of PZT – 5A material is equal to 7500 kg/m3. For FGP 
ceramic disks the following exponential gradation functions for elastic, piezoelectric, and dielectric properties are 
considered (assuming material properties vary in y Cartesian direction, see Fig. 3) for a 2D problem: 
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where, β, γ, α  are the material gradation parameter elastic, piezoelectric and dielectric properties, respectively. In this 
work, it is assumed β, γ, and α equal to 85; 322; and 106, respectively. Density is assumed constant along thickness. For 
all numerical results the simulated models are sketched in Fig. 3, which represents a two-dimensional piezoceramic disk 
geometry subjected to electric potential between top and bottom disk surfaces. For static analysis the piezoceramic is 
fixed on both lateral sides (see, Fig 3(a)), and for modal and harmonic analyses the piezoceramic is simulated 
considering boundary conditions for free response constraining the lateral vibrations, thus the model have only 
horizontal mechanical constraints in both lateral sides of piezoceramic, see Fig. 3(b).      

 
4.1 Static Results 
 

Initially, a static analysis was developed. An input electric potential equal to 100 V is applied. The σxx, σzz, and σxz 
stresses, Ez electric field, uy displacements, and φ electric potential values, for FGP and non-FGP implementations, are 
calculated. Here, only the vertical displacements, stresses σxx, σzz, and σxz, and electric potential are shown in Fig. 4, 5, 
6, 7, and 8, respectively. Also, the ANSYS response when is used a homogeneous material is shown. The piezoceramic 
simulated is sketched in Fig. 3(a), with boundary conditions and dimensions. For all examples the domain is discretized 
with 30 x 30 four-node bilinear (Q4) isoparametric finite elements, considering both GFE and HFE, and a 3 x 3 Gauss 
quadrature is employed. 

From Fig. 4 up to 8 is observed that FGP models produce similar displacement, stress, and electric potential 
distribution that the non-FGP models, except for stress σxx. At the same time, these FGP ceramics have smaller stress 
magnitude; these magnitudes decrease 37.8 %, 29.4 % and 50 % for the maximum stress σxx, σzz, and σxz, respectively.  
It is an advantage, because high stress levels accelerate the aging process of piezoelectric materials and they reduce the 
lifetime of piezoceramic. However, in non-FGP ceramic disk higher displacements are present when an input voltage is 
applied (although differences with FGP material are small). Also, it is observed in Fig. 4 up to 8 that homogenous 
responses (non-FGP ceramic simulated with Matlab) are closed to ANSYS results; however, the Matlab and Ansys 
stress results show some differences, this can be caused due to different stress calculation procedure. Ansys use the 
four-nodal information to interpolate the stress inside of finite element. The code implemented in this work calculates 
the stress in middle of finite element.   
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Figure 4. Vertical Displacement (m). (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP 
model with Ansys 
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Figure 5. Stress σxx (Pa). (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP model with 
Ansys 
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Figure 6.  Stress σzz (Pa). (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP model with 
Ansys 
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Figure 7. Stress σxz (Pa). (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP model with 
Ansys 
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Figure 8. Electric potential (V). (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP model 
with Ansys 

 
4.2 Modal Results 
 

Modal analysis of this piezoceramic involves two cases which spans the extremes of the piezoelectric coupling 
effect due to voltage and displacement degrees of freedom. The first case is commonly called the "resonance" condition. 
A constant voltage equal to zero is applied to the electrical contacts (electrodes) of ceramic disk. This is a "short-circuit" 
condition, where all voltage potentials are connected to ground. The second case, called "anti-resonance", applies a zero 
voltage only to one electrode. In this modal analysis, only vibration modes along thickness are calculated, according to 
model of Fig. 3(b). 

Table 2 shows a comparison of the natural frequencies when homogeneous (ANSYS and MATLAB responses) and 
FGP ceramics are used. The vibration modes are calculated for resonance and anti-resonance conditions. Thus, when 
resonance and anti-resonance frequencies are equal, it is a mechanical mode and, when resonance and anti-resonance 
frequencies are different, it is a piezoelectric mode, which is our mode of interest. On contrary, a mechanical mode is 
identified when resonance and anti-resonance frequencies are equal. The eigenvector plots for first and second 
piezoelectric modes are shown in Fig. 9 to Fig. 10, respectively.  
 

Table 2. Natural frequencies for different material distribution problems 
 

Mode FREQUENCIES (MHz) 
 FGP model with 

Matlab 
Non-FGP model with 

Matlab 
Non-FGP model with 

Ansys 
First Piezoelectric mode 0.348844 0.393624 0.392914 

Second Piezoelectric mode 0.735877 0.928034 0.922429 
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Figure 9. First piezoelectric mode. (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP model 
with Ansys 
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Figure 10. Second piezoelectric mode. (a)  FGP model with Matlab; (b) Non-FGP model with Matlab; (c) Non-FGP 
model with Ansys 

 
4.3 Harmonic Results  

  
The same 2D model used in modal analysis is simulated by using a harmonic analysis. The input for this simulation 

was voltage amplitude imposed across the piezoelectric ceramic disk. The input varied sinusoidally between +/-100V. 
 

(a)

(b)

(a)

(b)  
 

Figure 11. Displacement frequency response. (a)  FGP model with Matlab; (b) Non-FGP model with Matlab 
 
The harmonic analysis was performed over a frequency range of 0-3.5 MHz in equal steps of 3.5 kHz. At each 

frequency, the implemented software computes the steady-state response of the system subjected to a sinusoidally 
varying input on the FGP or non-FGP ceramic disk. No damping ratio was assumed over all frequencies of the 



 

harmonic analysis sweep. The result of particular interest in this solution was the Y (vertical) displacement of the 
transducer over the frequency sweep, measured at point A in Fig. 3(b) (the top-middle of ceramic disk).  

Figure 11 shows the normalized-frequency Y displacement (focused on the thickness vibration modes) for the 
uniform piezoelectric ceramic (non-FGP) disk and for the FGP model. The resonant responses for the odd order 
vibration mode appear in the non-FGM. It is noted, however, that both even and odd order vibration modes appear in 
FGP ceramics, also see Table 2. This result is in accordance with Yamada’s results (Yamada et al., 2001). They develop 
an analytical one-dimensional model for FGP ceramics, and found even and odd vibration modes in the admittance 
response of FGP plates. 

 
5. SUMMARY AND CONCLUSIONS 
 

The modelling of FGP ultrasonic transducers was considerably successful, based on Graded Finite Element 
modelling. Also, this work provides an investigation of graded piezoceramic disk responses considering static, modal 
and harmonic analyses. These responses were compared to homogeneous one (non-FGP properties). Generalized 
isoparametric formulation is employed in FE method to investigate the response of gradation material in piezoceramic 
disks. This formulation adopts the same interpolation methods of the coordinates and displacements to treat continuous 
change of material at the element level. This approach results in smooth solution transition across the element 
boundaries.  

The following conclusions can be drawn from these studies: 
 
• The GFE modelling is an accurate technique, consisting of useful tools for designing FGP transducers, thus 

this work fulfill the lack of computational methods, in commercial softwares, to evaluate the performance of 
piezoelectric disk when material inhomogeneity at the element level is considered. This approach represents a 
more accurate technique instead of multi-layer approach to model the gradation behavior. 

• With graded piezoceramic disks lower stress levels and more resonance frequencies can be obtained; in other 
words, even and odd vibration modes are achieved; with non-graded piezoceramics only odd modes are 
obtained. Thus, large improvements can be achieved in their performance characteristics by using FGP 
concept. 

• In this work, only an exponential gradation function is used to simulate the piezoceramic properties; 
nevertheless, other gradation functions can be used; however, which gradation function produces better 
performance? This suggests the use of optimization techniques to design graded piezoceramic disks. Based on 
these ideas, in a future work, it is proposed the development of optimization algorithms to find this optimized 
gradation function.  
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