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Abstract. In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton 
exchange membrane fuel cell (PEMFC), is introduced. The diagnosis is developed by applying Bayesian networks, 
which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is 
based on the on-line monitoring of variables easy to measure in the device such as voltage, electric current, and 
temperature. The fault effects are studied based on experiments on a fault tolerant fuel cell, which are reproduced in a 
fuel cell model. A database of fault records is constructed from the fuel cell model, reducing the time necessary to 
obtain the fault records and avoiding permanent damage to the equipment. 
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1. INTRODUCTION  
 

In the last few years humans are concerning more about environmental issues like global heating. In this context, 
major efforts to reduce greenhouse gas emissions have increased the demand for pollution-free energy sources, and 
governmental agencies and private-sector are investing in R&D to support programs for clean energy generation 
including hydrogen-based energy generation. 

Similar to batteries, fuel cells are electrochemical devices that generate electricity. However fuel cells can be 
continuously fueled. Most recent developments in proton exchange membrane fuel cell (PEMFC) technology have 
made it the most promising for stationary and mobile applications in the range up to 200 kW. They are characterized by 
high efficiency, high power density, no aggression to the environment, no moving parts, and superior reliability and 
durability. 

Generally, PEMFC uses hydrogen as a raw material which, under certain pressure, is supplied into a porous 
conductive electrode (the anode). The H2 spreads through the electrode until it reaches the catalytic layer of the anode, 
where it reacts, separating protons and electrons. The H+ protons flow through the electrolyte (a solid membrane), and 
the electrons pass through an external electrical circuit, producing electrical energy. On the other side of the cell, the 
oxygen (O2) spreads through the cathode and reaches its catalytic layer. On this layer, the O2, H+ protons, and electrons 
produce liquid water and residual heat as sub-products (Larmine and Dicks, 2000). 

Several papers have been published considering the fuel cell (FC) operation in normal conditions (Corrêa et al., 
2003) (Corrêa et al., 2004) (Larmine and Dicks, 2000); but few of them addressed the FC operation under fault 
conditions. Faults are events that cannot be ignored in any real equipment, and their consideration is essential for 
improving the operability, flexibility, and autonomy of any automatic device. 

In this paper, a fault diagnostic supervisor is designed to execute online diagnosis, which indicates the cause of an 
incipient fault. The supervisor uses a Bayesian network arrangement to establish the cause-effect relationship, and to 
calculate the probability of the most likely fault cause. An early alert of an incipient fault allows decisions to avoid 
degradation of other components and catastrophic faults in the equipment. A FC model able to reproduce the effects of 
faults on a fault tolerant fuel cell (FTFC) is introduced. The supervisor and the FC model were integrated using the 
MatLab/SimuLink® environment to conduce the tests and evolution of the equipment. 

This paper is organized as follows. In section 2, the considering FTFC is presented. In section 3, the FC model is 
introduced. In section 4, four types of faults in PEMFC are considered: faults in the air fan, faults in the refrigeration 
system, growth of the fuel crossover, and faults in hydrogen pressure. Section 5 presents a short background of 
Bayesian networks, and introduces the fault diagnostic supervisor for PEMFC. Finally section 6 presents the 
conclusions of this work. 
 
2. THE FAULT TOLERANT FUEL CELL (FTFC) 
 

The design of a fault diagnostic supervisor can be made, in principle, in two ways: by the human-expert knowledge 
elicitation or by the analysis of the operation of a FC in faulty conditions; since the former requires an exhaustive 
analysis of various experts’ knowledge, we adopt the second approach and a FTFC has been constructed at the PSERC 
laboratory of the CSM (Colorado School of Mines) in order to perform the analysis of a FC. This FTFC is constituted 
by a control system, a sensor system, and a power system. The control system allows the adjust (either manual or 
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automatic) of the speed of the air-reaction fan and the refrigeration fan. These tasks can be executed either by 
microcontrollers (inside the FTFC) or by PC (using LabView® software). The sensor system allows monitoring the 
voltage (VS), electric current (IFC), temperature (T), and relative humidity (HROUT). These tasks also can be made by the 
LabView® software which can be applied for monitoring the speed of the fans too. The air for reaction and the air for 
refrigeration are separated on different routes which simplifies the monitoring process of some variables. The power 
system is formed by one AvistaLabs® cartridge containing four proton exchange membranes (PEM). 

The FTFC allows the operation and the monitoring of the system even when faults occur. Fig. 1 illustrates the 
monitoring of the FTFC; this figure shows the FTFC, the load, and a PC with the LabView® software executing the 
monitoring process. 

 

 
 

Figure 1. Monitoring of the FTFC 
 
Figure 2 illustrates the evolution of several variables such as FTFC output voltage (VS), electric current (IFC), 

temperature (T) and airflow volume using the software LabView® when the FTFC operates in normal conditions. 
 

 
 

Figure 2. Evolution of the FTFC’s variables in normal conditions. 
 
The FTFC was tested in different fault conditions. Figure 3 illustrates the evolution of the output voltage (VS), 

electric current (IFC), and relative humidity (HRout) when the H2 pressure is reduced at t = 10 minutes. 
Figure 4 illustrates the evolution of the output voltage (VS), electric current (IFC), and relative humidity (HRout) when 

the air-reaction volume is reduced at t = 30 minutes. 
 



 

6

0

1

2

3

4

5

Time
00:22:5000:00:00

Voltage 0.06

 

15

0

2.5

5

7.5

10

12.5

Time
00:22:5000:00:00

Ifc 0.30

 

100

0

20

40

60

80

Time
00:22:5000:00:00

HRout (%) 33.59

 
Figure 3. Evolution of the FTFC’s variables by reduction of H2 pressure. 
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Figure 4. Evolution of FTFC’s variables by reduction of the air-reaction volume. 

 
The analysis of the FTFC behavior under faulty conditions requires a considerable number of cases in order to 

obtain a reliable model of the system. Unfortunately, the generation of each case requires about two hours of supervised 
experiments; therefore, the construction of a database with a considerable number of cases became highly time-
consuming. Also, fault effects such as membrane breaking or drying of membrane imply permanent damage to the 
FTFC. The effects of different types of faults can be simulated adapting a FC model, avoiding damage to the equipment 
and reducing the time necessary to obtain the fault records. 

 
3. THE FUEL CELL (FC) MODEL 
 
A FC model to simulate operation in normal conditions was developed by Corrêa et al. (2003). In this paper, the 

polarization curve obtained with the model is compared to the polarization curve of the manufacturing data sheet to 
validate the model. The FC model is based on the calculation of voltage, temperature, and humidity, Eqs. (1) to (3), 
respectively. 

The voltage is obtained by the equation: 
 

conohmicactNernstFC VVVEV −−−=                                                                                                                             (1) 
 

where: ENernst is the thermodynamic potential of the cell and is a function of the hydrogen pressure (PH2
), oxygen 

pressure (PO2
), and the operating temperature. Vact is the voltage drop due to the activation of the anode and the cathode, 

and is a function of the electric current (IFC), the oxygen concentration (CO2), and the coefficients ξi (i = 1...4), which 
are specific for each type of FC. Vohmic is the ohmic voltage drop associated with the conduction of protons through the 
membrane, and electrons through the internal electronic resistance; is a function of the contact resistance to electron 
flow (RC), and the resistance to proton transfer through the membrane (RM). RM is a function of the specific resistivity of 
membrane (ρM), the thickness of membrane ( ), the active area of the membrane (A), the electric current (IFC), and the 
coefficient ψ which depends on the type of membrane. Vcon represents the voltage drop resulting from the mass 
transportation effects, which affects the concentration of the reacting gases, and is a function of a constant B which 
depends on the type of FC, the maximum electric current density permitted (Jmax), and the electric current density 
produced by the cell (J). In general, J=Jout+Jn where Jout is the real electrical output current density, and Jn is the fuel 
crossover and internal loss current. 

Considering a stack composed of several FCs, the output voltage is: VS=nr·VFC, where nr is the number of cells 
composing the stack. 



The variation of temperature in the FC is obtained with the following differential equation: 
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where: M [kg] is the whole stack mass; Cs [J/K·kg] is the average specific heat coefficient of the stack; and QΔ  is the 
rate of heat variation (i.e. the difference between the rate of heat generated by the cell operation and the rate of heat 
removed). Four types of heat can be removed: heat by the reaction air flowing in the stack (Qrem1), by the refrigeration 
system (Qrem2), by water evaporation (Qrem3), and by heat exchanged with the surroundings (Qrem4). 

The relative humidity HRout of the output air is calculated from the equation 
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where: PWin is the partial pressure of the water in the inlet air-reaction; PWgen is the partial pressure of the water 
generated by the chemical reaction; and Psat_out is the saturated vapor pressure in the output air. 

For normal operation of the FC, proper temperature and humidity should be maintained. If the HRout is much less 
than 100%, then the membrane dries out and the conductivity decreases. On the other hand, a HRout greater than 100% 
produces accumulation of liquid water on the electrodes, which become flooded and block the pores, making gas 
diffusion difficult. The result of these two conditions is a fairly narrow range of normal operating conditions. In 
abnormal conditions such as flooding or drying, parameters (such as RC and Ψ) that are normally constant start to vary.  

Figure 5 (adapted from Larmine and Dicks, 2000) illustrates the effects of variation in temperature and HRout for 
different stoichiometrical air relationships (λ = 2, λ = 4). The stoichiometry λ is the relationship between inlet air 
divided by the air necessary for the chemical relation. 

In general, these parameters are based on manufacturing data and laboratory experiments, and their accuracy can 
affect the simulation results.  In Corrêa et al. (2004), a multi-parametric sensitivity analysis is performed to define the 
importance of the accuracy of each parameter. The accuracy was analyzed in normal conditions, considering variations 
around ±10% of their normal values. However, in fault conditions, those variations can be stronger, as presented in 
sections 4.1 through 4.4. 
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Figure 5. Temperature and Relative Humidity HRout for λ=2 e λ=4. 
 

4. FAULTS IN FUEL CELLS (FC) 
 
In general, two categories of fault detection can be considered (Frank, 1992): 
 

• Faults that can be detected by monitoring a specific variable. For example, fuel leaks can be detected by 
installing a specific gas sensor. In this case, a diagnosis is not necessary. 

• Faults that cannot be detected directly by monitoring or faults that need some type of diagnosis. 
 

In practice, fault detection on commercial FC equipment is limited to detection of faults of the first type. This work 
focuses on fault detection of the second type. 



 

Four types of faults in PEMFCs are considered in this study: a) fault in the air fan, b) fault in the refrigeration 
system, c) growth of fuel crossover and internal loss current, and d) fault in hydrogen pressure. The effects of these 
faults and the behavior of the FTFC in fault operating conditions are included in the FC model. 

 
4.1 Fault in the air reaction fan 
 
A reduction of the reaction air by a fault in the air fan can produce two major effects: (i) accumulation of liquid 

water that cannot be evaporated, thus affecting the resistivity of electrodes, and (ii) reduction of O2 concentration below 
that necessary for a complete reaction with the H2.  

The variation of resistivity produces an increase in the ohmic voltage drop (Vohmic), and consequently reduces the 
output voltage of the FC (VFC). 

The second effect of a fault in the air-reaction fan occurs when λ is below the practical and recommended value. In 
this case, the O2 concentration is reduced and the exit air completely depleted of O2. This reduction of O2 concentration 
produces a negative effect on the ENernst and the increment on the Vact. Figure 6 illustrates the evolution of output voltage 
(VS), electric current (IFC), water volume accumulated, relative humidity (HRout), and stoichiometry, when a partial fault 
in the air fan occurs at t=30 minutes. 
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Figure 6. Evolution of the FC model by air-reaction fault. 

 
4.2 Fault in the refrigeration system 
 
The refrigeration system maintains temperature within operating conditions. When the temperature increases, the 

reaction air has a drying effect and reduces the relative humidity (HRout). A low HRout can produce a catastrophic effect 
on the polymer electrolyte membrane, which not only totally relies upon high water content, but is also very thin (and 
thus prone to rapid drying out). The drying of the membrane changes the membrane’s resistance to proton flow. Figure 
7 illustrates the evolution of output voltage (VS), electric current (IFC), temperature, relative humidity (HRout), and 
stoichiometry produced by a fault in the refrigeration system (i.e. a reduction of Qrem2) at t=30 minutes. 
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Figure 7. Evolution of the FC model by refrigeration system fault. 

 
4.3 Increase of Fuel Crossover (Jn) 
 
There is a small amount of wasted fuel that migrates through the membrane. It is defined as fuel crossover and is 

produced by some hydrogen that diffuse from the anode (through the electrolyte) to the cathode, reacting directly with 
the oxygen and producing no current for the FC. 

In normal conditions, the flow of fuel and electrons through the membrane (Jn) is very small, typically representing 
only a few mA/cm2. A sudden increase in this parameter can be associated with either abnormal ion membrane 
conduction or rupture of the membrane. This variation of Jn produces an increase in the concentration voltage drop 
(Vcon), and therefore a reduction of VFC. Fig. 8 illustrates the evolution of output voltage (VS), electric current (IFC), 
generated heat (Qgen), output power (Pow), and stoichiometry produced by an increase in the fuel crossover from 0.022 
to 0.2 A/cm2 at t=30 minutes. 
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Figure 8. Evolution of the FC model by membrane breaking 

 
4.4 Fault in Hydrogen Pressure 
 
In general, for mobile and stationary applications, hydrogen is supplied by a high-pressure bottle, which is then 

reduced by a pressure regulator. In normal conditions, the hydrogen pressure is assumed to be constant (generally 
between 1 and 3 atm). A lower pressure negatively affects the performance of the FC. The reduction of H2 pressure 
decreases the ENernst, increases the Vact, and has a corresponding effect on VFC (see Eq. (1)). Fig. 9 illustrates the 
evolution of output voltage (VS), electric current (IFC), generated heat (Qgen), stoichiometry, and relative humidity 
(HRout) produced by a reduction of the H2 pressure. 

When a fault occurs, an interconnected dependence among the variables is established; in general, all the variables 
perform some kind of changes that hinders the diagnosis of the fault cause. To qualify and quantify the dependence 
among the variables, a Bayesian network is constructed to conduct the fault diagnosis. 
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Figure 9. Evolution of the FC model by H2 pressure fault. 

 
5. BAYESIAN NETWORKS FOR FAULT DIAGNOSIS 
 
A Bayesian belief network is a tool that graphically represents causal influences among a set of nodes in which each 

node represents a random variable or an uncertainty.  These nodes can assume two or more values and for each node Xi, 
every other node that has a direct influence on it, is called a parent of Xi (pa(Xi)).  A Bayesian network consists in a 
structure and a set o parameters, where the structure is represented by a directed acyclic graph (DAG) and the 
parameters are represented by a conditional probability table (CPT) that represents the conditional probabilities of a 
node given the set of its parents. 

The construction of the graph topology to describe a diagnostic process can be conduced in two ways: 
 

• based on knowledge elicitation about the system, where relationships among variables are established; 
• based on system manuals, handbooks and human knowledge about the process; or 
• based on learning methods using databases of records of past operations. 

 
There are tools for the construction of Bayesian networks based on knowledge elicitation that makes it very 

attractive (Beinlich and Herskovits, 1990), however, its efficacy completely depends on the expert human knowledge 
about that domain. 

In this work, the construction of a Bayesian network for fault diagnosis begins with the generation of a graph 
applying probabilistic methods, and it is then refined using domain knowledge. The complete sequence consists of the 
following steps: 

 
1. Construction of the database -- the records are provided from a mathematical model of a PEMFC implemented 

on MatLab®. Field experiments could also provide those records, however, two major problems should be 
considered: i) large amounts of data are necessary, and ii) variables such as Qgen, flooding, λ, etc, impose 
additional challenges to the monitoring stage.  

2. Implementation of search-and-score algorithms (e.g. the Bayesian-Score (K2) (Cooper and Herskovits, 1992) 
and MCMC (Murphy, 2000)) to find the initial structure. The probabilistic approaches were implemented using 
the Bayesian Network Toolbox developed for MatLab® (Murphy, 2000). 

3. Arrange of groups of variables in layers. Fault causes, sensors, and pattern recognition are considered in such 
layers.  

4. Constraint-based conditions and knowledge application for the improvement of the structure.  
5. Calculation of conditional probabilities on the final structure. In this research, the maximum posteriori 

likelihood algorithm (Pearl, 1988) was applied. 
 
5.1 Generation of database 
 
Binary states of the variables are considered (0=normal, 1=abnormal). The general procedure is to monitor a specific 

variable; if after a fault takes place and the value of such variable is off a certain tolerance band, then a flag should be 
turned to “1”.  



The next step is the construction of a vector containing the value of all variables. This vector corresponds to a single 
case in the database with values of all variables considered in a certain period. A database of fault records with 1,000 
cases was constructed. 

From the mathematical model, the evolution of variables that can be difficult to monitor on a real equipment (such 
as Qgen or λ) can be observed. Records of all variables are essential for the construction of the network structure 
avoiding hidden variables. The probabilistic calculation of the diagnosis is simpler if there are no hidden variables 
(Pearl, 2000). 

 
5.2 Search and Score Algorithms 
 
The Bayesian-Score (K2) and the Markov Chain Monte Carlo (MCMC) algorithms were implemented in separated 

ways. The K2 algorithm adds parents to a single node the addition of which most increases the score of the resulting 
structure. When the addition of no single parent increases the score, we stop to add parents to a node and we go to the 
next node. Before the algorithm begins, the possible parents of every variable must be defined. Therefore, the human-
expert experience is important to define that order. 

The MCMC algorithm starts at a specific point in the space of all possible DAGs. The search is performed through 
all the nearest neighbors, and it moves to the neighbor that has the highest score. If no neighbor has a higher score than 
the current point, a local maximum was reached and the algorithm stops. A neighbor is the graph that can be generated 
from the current graph by adding, deleting or reversing a single arc. 

In practice, the search-and-score algorithms are not exact and are used only as initial approximations. Also since the 
K2 and MCMC algorithms apply different tradeoffs for searching the structure, those algorithms can produce different 
results; therefore, knowledge about the conditional independence among the variables should be applied. 

 
5.3 Layers of the Bayesian network 
 
For a better understanding of the relationship among variables, those are separated in several layers. In the final 

structure, three layers are considered: fault causes, sensors, and pattern recognition. Fault causes are the possible causes 
of the fault such as fault in the air fan (aF), fault in the refrigeration system (rF), growth of Jn, and low H2 pressure. 
Sensors are the variables that can be easily monitored (such as output voltage (VS), electric current (IFC), power, 
temperature, and H2 pressure (PH2)). Pattern recognition is associated with variables difficult to monitor in a real 
equipment, but that play an important role in a cause-effect structure and define a fault pattern. Those variables are: 
generated heat (Qgen), stoichiometrical air relationship (λ), volume of air flow (Fl), drying of membrane (Dr), flooding 
of electrodes (F), overload (Ov), and relative humidity (HRout). 

  
5.4 Constraint-based conditions and knowledge 
 
First, the fusion of the results applying several probabilistic algorithms confirms the edges present in different 

structures, second, the remaining edges are submitted to erasing based on constrains and domain knowledge. 
Some of the considered constraints are: i) independence among the fault causes (Jn, aF, rF, H2), where only one 

fault takes place each time and one fault cause does not influence other fault causes; in other words, there are not edges 
between two causes; ii) independence among sensors (Pow, IFC, V, T, pH2) where the monitored variable is not 
influenced by other variables, only by the effects monitored by itself, and iii) general knowledge about patterns 
influences. 

Fig. 10 illustrates the resulting Bayesian network structure for fault diagnosis in PEMFC. 
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Figure 10. Bayesian network structure for fault diagnosis in a PEMFC. 



 

Network structures representing a diagnostic process play a fundamental role for fault tolerant machines since they 
can be associated with fault treatment processes, (i.e. performing the fault diagnosis to identify the fault cause and 
executing the automatic recovery process). In (Riascos and Miyagi, 2001), (Miyagi and Riascos, 2006) and (Riascos et 
al., 2003) fault detection and fault treatment were analyzed, the case studied were automatic recovery processes in 
electric autonomous guided vehicles and machining processes. 

 
5.3 The Online fault diagnosis 
 
Inference in Bayesian networks is the computation of a conditional probability p(Xq|XE), where Xq is the variable of 

interest (e.g. the most probable fault cause) and XE is the variable or set of variables that have been observed (i.e. the 
effects observed by sensors and transformed into logic outputs). 

There are many different algorithms for calculating the inference in Bayesian networks, which apply different 
tradeoffs among speed, complexity, generality, and accuracy. The on-line fault supervisor executes the fault diagnostic 
inference by applying the probability propagation in trees of clusters (PPTC) algorithm, which is an exact method of 
inference and that, generally, can be applied to any type of Bayesian network structure (Cozman, 2001). 

Figure 11 illustrates the conduction of an on-line fault diagnosis. This test was performed by externally forcing the 
output of the refrigeration system to zero, (this simulates a fault condition). In this case, the supervisor detects abnormal 
variations in some variables during the operation of the FC; these variations constitute the evidence. Then, the 
conditional probabilities were calculated for all fault causes (Jn, aF, rF, and H2) and shown on the supervisor’s display. 
According to the supervisor, the most probable fault cause is rF (fault in the refrigeration system) with 94% probability. 
The second probable cause is an increase of Jn with 44% probability, and causes aF and H2 have 0% probability. 

In all tests performed, the supervisor always indicated the true cause as the most probable cause. 
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Figure 11. Online fault diagnosis execution 
 

In general, the variation of electrical variables (such as output voltage (VS), and electric current (IFC)) is faster than 
the variation of thermo-dynamical variables (e.g. temperature). Therefore, the diagnosis of faults such as rF takes more 
time (in this case, around 20 seconds); actually, this speed depends entirely on the accuracy of the sensors. 

According to our experience, a worse case scenario still allows fault detection in less than one minute. But, even one 
minute is a good speed for detecting incipient faults before a catastrophic effect takes place in the fuel cell system. 

 
6. CONCLUSIONS 
 
The design of a supervisor system to perform on-line fault diagnosis in fuel cells was implemented. The execution 

of the diagnosis was based on a Bayesian network, which qualifies and quantifies the cause-effect relationship within 
the variables. 

Fault records of some variables were constructed including variables difficult to monitor in a real machine. The 
record of all relevant variables is essential for the construction of the network structure avoiding hidden variables, 
especially in intermediary layers. 

After the construction of the Bayesian network, the inference calculation is based on observations of variables 
relatively easy to monitor with sensors such as voltage, electric current, temperature, etc. This allows the 
implementation of fault diagnostic processes in real equipment. 



The fault diagnostic tests have shown agreement between the inference results and the original fault causes. 
In general, the fault diagnostic tests were fast enough to detect incipient faults before a catastrophic effect took place 

in the fuel cell system. 
Topics such as the study of fault effects in fuel cells, the construction of network structures for fault diagnosis in 

fuel cells, and their association to fault treatment processes are still under study, and are open to research contributions. 
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