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Abstract. This work presents an approach to calculate the inverse kinematics of a binary flexible manipulator. Binary 
manipulators are systems consisting of several actuators, each of them with only two potential states. By combining the 
binary state of each actuator, desired positions and trajectories can be obtained. A large number of actuators is 
desired to increase the number of end-effector positions and orientations attainable by the robot, approaching the 
performance of a continuous system. The main advantages of these redundant systems are ease of control and 
robustness to actuator failure. The studied manipulator structure is made of a polymer-reinforced elastomer, very 
flexible and lightweight, consisting of several independently pressurized chambers. Each chamber has only two states, 
pressurized or not, causing the manipulator structure to deform in a well-known direction. By leaving open or closed 
the valves of each chamber, the end-effector position and orientation can be controlled. However, to obtain the 
required inverse kinematics of a system consisting of m actuators, 2m states would need to be evaluated through an 
exhaustive search. To avoid this computational burden, genetic algorithms are used in this work to obtain the required 
combination of valve states required to position the manipulator end-effector. Simulation results demonstrate the 
efficiency of the algorithm. 
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1. Introduction  

 
Recently, much interest has been devoted to the concept of continuous manipulators with flexible links (Robinson 

and Davies, 1999). Such systems consist of flexible links that can be continuously deformed in a controllable way, as 
opposed to traditional rigid link manipulators with rotary and prismatic joints. Flexible links allow an increase in 
performance when interacting with the environment, providing the required redundancy to avoid obstacles along the 
path between the manipulator base and end-effector. However, the hardware involved to control such multi degree-of-
freedom (DOF) systems can be quite complex and expensive, due to the high number of required sensors and actuators. 

Merging this concept with the field of binary robotics can result in a flexible system with many degrees of freedom 
and high mobility, without the need of a complex and costly hardware setup (Lichter et al., 2002). In a binary 
manipulator, each actuator can have only two states, either on or off, behaving as a discrete system. As the number of 
actuators is increased, so does the number of degrees of freedom and therefore its ability to behave as a conventional 
continuous manipulator. The control system required by such hiper-redundant binary manipulators is much simpler than 
conventional ones, since no feedback for continuous positioning is required. To change the binary manipulator end-
effector, one only needs to switch the state of each actuator accordingly. As a result, the hardware weight and 
complexity can be significantly reduced. 

The kinematics and control of conventional hiper-redundant manipulators has been extensively studied in the 
literature (Chirikjian and Burdick, 1995; Ebert-Uphoff and Chirikjian, 1996; Huang and Shou-Hung Ling, 1994). 
However, the kinematics and trajectory generation for binary manipulators is a more challenging problem if compared 
to conventional manipulators (Ebert-Uphoff and Chirikjian, 1996; Sujan et al., 2001; Sujan and Dubowsky, 2004). For 
instance, the inverse kinematic problem of a binary robot involves a huge search effort on the manipulator’s discrete 
workspace, until finding the actuator configuration that best approaches the desired end-effector position. 

The workspace of a binary manipulator is not a continuous region (Sen and Mruthyunjaya, 1994). Instead, the 
associated workspace is a finite set of points in space, see Fig. 1. For each point in the workspace, usually there is only 
one attainable end-effector orientation, represented by the arrows in Fig. 1(b). The density of such points increases with 
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the number of actuators, since each new actuator doubles the number of possible end-effector configurations. The 
higher the density, the closer the behavior to the one of a continuous system. 
 

 
 

Figure 1. Distinction between continuous and binary manipulator workspaces (Lichter et al. 2002) 
 
In this work, a genetic algorithm is used to obtain the inverse kinematics of a binary flexible manipulator. The 

manipulator concept involves a structure made of polymer-reinforced elastomeric hoses, which are deformed through 
pneumatic actuation. Such actuation principle has been described and implemented for a small number of degrees of 
freedom in (Hafez et al., 2003; Suzumori et al., 1991; Suzumori et al., 1992). The use of genetic algorithms to evaluate 
the inverse kinematics of manipulators is not new, however this work presents for the first time the application of such 
technique to a binary flexible robot. 

The simulated binary system is a 48 DOF 3-D pneumatic flexible manipulator. Based on the equations of the 
manipulator direct kinematics, a genetic algorithm (GA) is used to find the best actuator configuration to achieve a 
desired end-effector position within the workspace. The algorithm performance is compared to the one obtained from 
random search techniques. This GA enables the calculation of the inverse kinematics and trajectory planning for such 
hiper-redundant binary manipulator. In the next section, the manipulator and its model are presented. 

 
2. Manipulator model 
 

The proposed pneumatic manipulator consists of n elastomeric links connected in series, actuated pneumatically. 
Each link has three independently pressurized chambers with pressures P1, P2 and P3, see Fig. 2. The pressure 
difference among the chambers causes the link to bend in a known direction, otherwise the link remains straight if all 
pressures are equal (Suzumori et al., 1991; Suzumori et al., 1992). 

 

 
 

Figure 2. Schematics of one manipulator link with its three independently pressurized chambers 
 

Each link has 3 DOFs, resulting in a 3n DOFs system. The differences (P1 − P2) and (P1 − P3) are enough to define 
the bending orientation and radius of each link, which result in most of the system mobility. In addition, the mean 
pressure (P1 + P2 + P3)/3 is responsible for the stretching of the entire link in its axial direction. In most cases this 
stretching is relatively small if compared to the bending effect on the link. Even though this mean pressure effect must 
be accounted for in direct kinematics, it only provides a weak additional mobility to the end-effector. Therefore, only 2n 
DOFs provide most of the system mobility. The remaining n DOFs, which are associated with the mean pressure in 
each of the n links, are mostly responsible for changing the system compliance. 

Assuming each link with an initial length L0, the final length L can be calculated from the axial displacement ∆L 
caused by the mean pressure 
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where Ap is the total cross section area of the 3 pressurized chambers, A0 is the cross section area of the fiber-reinforced 
elastomeric structure (without including the chambers area), and E is the elastomer Young’s modulus, see Fig. (3). The 
above equation assumes only axial deformation, without significant radial deformation due to the fiber reinforcement. 

 
 

Figure 3. Analytical model of each link 
 

The center of the chamber associated with pressure P1 is defined at the y axis between the third and fourth quadrants 
of the xy plane in Fig. 3. The chambers with pressures P2 and P3 are defined on the second and first quadrants 
respectively. Assuming there is a pressure difference among the chambers, the link ideally deforms as a circular arc 
with angle α and radius R, calculated by 
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where d is the excentricity of each chamber (Fig. 3) and I is the bending moment of inertia of the link. Note that α is 
also the angle between the link ends. 

The angle θ between the axes x and x’, where x’ is the direction of the projection of the link onto the xy plane in Fig. 
3, can also be obtained from the applied pressures, resulting in: 
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2.1. Direct kinematics 
 

From Equations (1-4) it is possible to obtain the values of Li, Ri, αi and θi of each link i of a manipulator. These 
values are used to obtain a homogeneous transformation matrix 1i

iA −  between the coordinate frames of both link ends: 
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Note that the above matrix is a function of the pressures P1,i, P2,i and P3,i applied at respectively at the chambers 1, 2 
and 3 of link i. For a manipulator with n links, the matrix  which correlates the base and end-effector coordinate 
frames is obtained by (Craig, 1989): 
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When binary actuation is considered, then each chamber is either pressurized with a fixed pressure P or with no 

relative pressure at all. Each link has then only 23 = 8 possible states, limiting the values of θi to the angles 30o, 90o, 
150o, 210o, 270o or 330o, and the radius R as either infinity (for a straight link configuration) or to: 
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2.2 Inverse kinematics 

 
Position and trajectory control of the manipulator require the calculation of its inverse kinematics. After defining a 

desired end-effector position and orientation of an n-link manipulator, the required 3n pressures P1,i, P2,i, P3,i (i = 1, 2, 
..., n) must be obtained. But, as expected, there is no analytical solution for the inverse kinematics of the considered 
manipulator. 

When binary actuation is considered, a manipulator with n links will only have a solution for its inverse kinematics 
for the 23n points that form its workspace. For any other desired end-effector position, a positioning error will always be 
present. It is desirable to choose which of the 3n chambers will be pressurized in order to minimize the error between 
the actual and desired end-effector positions. For a system with few links, this could be done using an exhaustive search 
among the 23n elements of the joint space. 

However, as the number of links is increased, the number of elements of the joint space grows exponentially. 
Therefore, the exhaustive search approach is impractical for systems with several DOFs. Random search is not a good 
alternative, since a very large number of samples would be required to guarantee a small end-effector error. Two 
reasonable options are a combinatorial heuristic search algorithm and a genetic search algorithm (Sujan and Dubowsky, 
2004). It has been found that while exhaustive search can be adequate for systems with up to 10 DOFs, combinatorial 
search is the most efficient method for systems between 10 and 40 DOFs approximately, and above 40 DOFs genetic 
algorithms are the best choice. In the next section, the implemented genetic algorithm is described. 

 
3. Genetic algorithm 
 

Genetic algorithms are a family of computational models inspired on evolution theory, used to find an optimum 
solution. These algorithms are basically function optimizers, even though the range of application of such methods is 
much wider. The GA begins with a set of random manipulator solution states, called a generation. The GA uses simple 
physically-based rules, or tests, to produce a fitness value for a given manipulator configuration (Sujan and Dubowsky, 
2004). The fitness value is used to compare one manipulator state to another. To generate successive generations of 
solutions, the algorithm allows for reproduction, genetic crossover and genetic mutation. The probability of 
reproduction is proportional to the fitness value of a solution, thus solutions with better fitness values have a better 
chance of being reproduced in the next generation. The algorithm then combines some attributes from one solution with 
those of another, selected from the set of reproduced solutions, a process called crossover. The algorithm may also add 
new characteristics that were not present in the previous generation, a process called mutation. Using the techniques of 
crossover and mutation, a new generation of manipulator configurations is evolved. Appropriately designed genetic 
search algorithms will converge to a locally optimum solution. This algorithm design involves selection of a fitness 
function, crossover and mutation probabilities, and the population size. 

Here a classical genetic algorithm approach for finding an optimum solution is used, where each cromossome 
consists of a 3n-bit binary word describing the manipulator state. The first 3 bits represent the state of link 1, where 
each pressure P1,1, P2,1 and P3,1 either receive a null value (bit 0) or a value P (bit 1). In general, bits at the 3i−2, 3i−1 
and 3i position are associated with the state of pressures P1,i, P2,i and P3,i of link i. These words are then used to find the 
transformation matrices of each link and ultimately the end-effector position (x, y, z): 
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The fitness is simply defined as a function of the error between the current end-effector position (xr, yr, zr) and the 
desired position (xd, yd, zd), calculated using the Euclidean distance. In order to make the fitness increase as the 
positioning error decreases, the following fitness function is adopted: 
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The above expression results in fitness values between 0 and 1. The considered operators in the implemented genetic 

algorithm are single-point crossover and mutation. A standard genetic algorithm is adopted, with a genitor selection 
technique based on roulette, all implemented in Matlab using the genetic algorithm toolbox and the functions specific to 
binary numbers. The cromossome from the previous generation with best fitness value, represented as a binary variable 
in the implemented code, is always included in the next generation, warranting that the next generation will have a 
fitness value at least equal or better than the previous one. In the next section, the proposed GA is evaluated. 

 
4. Simulation results 
 

The proposed algorithm is applied to a 48-DOF system, consisting of a flexible pneumatic manipulator with 16 
links. The considered manipulator parameters are shown in Table 1. These numbers are associated with the properties of 
a 3-DOF link prototype made of silicon rubber. 

 
Table 1. Simulated manipulator parameters. 

 
L0 (mm) d (mm) E (MPa) I (mm4) P (Mpa) A0 (mm2) Ap (mm2) 

40 10 0.5 1.1781x105 0.2 917.3 339.3 
 
The eight possible configurations of each link are shown schematically in Figure 4, where e.g. the configuration 

associated with the 3-bit word 101 has chambers 1 and 3 with pressure P (marked in black) while chamber 2 is 
depressurized (marked in white).   
 

 
 

Figure 4. Eight possible configurations of a manipulator link, with the associated 3-bit words 
 
Using the values defined in Table 1, the homogeneous transformation matrices associated with each 3-bit word can 

be computed: 
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These matrices can then be used to compute the end-effector position given a 48-bit word in the joint space. Figure 5 

shows the discrete workspace of the considered manipulator. 
 

 
 

Figure 5. Discrete workspace of the considered 16-link manipulator 
 
 The genetic algorithm is implemented using the parameters shown in Table 2 in the software Matlab using the 

genetic algorithm toolbox. The desired end-effector positions are chosen within the region of the manipulator 
workspace shown in Fig. 5, but not necessarily at exactly one of the points in the discrete workspace. Therefore, the 
globally optimal solution in general will not be associated with a zero error. 

 
Table 2. Genetic algorithm parameters 

 
Crossover probability (%) 90 
Mutation probability (%) 8 
Number of generations 1000 
Initial population size 30 

 
As an example, the desired end-effector position (xd, yd, zd) = (300, 300, 350)mm is chosen to demonstrate the 

behavior of the genetic algorithm. This desired position is within the region of the manipulator workspace, however 
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there is no inverse kinematic solution leading to this exact position. The first generation consists of 30 random 
cromossomes, where the one with best fitness is shown as the initial guess in Figure 6. The cromossomes with best 
fitness value for every 10 generations are also shown in the figure. For this example, the algorithm converged to a 
locally optimal solution (xr, yr, zr) = (300.5, 300.3, 349.2)mm, resulting in a residual error of 1.02mm (about 0.16% of 
the manipulator characteristic length). 

 

 
 

Figure 6. Evolution of the genetic algorithm to achieve a desired end-effector position 
 

The above example only reflects the results for a specific desired position. To evaluate the overall performance of 
the algorithm, 500 different desired end-effector positions are considered, chosen randomically within the region of the 
manipulator workspace. The root mean square (RMS) error for the 500 desired positions is evaluated at each of the 
1000 generations used in the genetic algorithm, as shown in Fig. 7. The results are compared with random search 
techniques, implemented by simply considering a genetic algorithm with a 100% mutation rate. In this way both 
approaches can be directly compared, see Fig. 7. 

Note that the end-effector error rapidly decreases during the first few generations for both techniques. However, for 
random search it is found that a plateau associated with a 65mm RMS end-effector error is reached, which could not be 
overcome within the considered 1000 generations. On the other hand, the error of the genetic algorithm continued to 
decrease until reaching a 1,65mm RMS value for the 500 simulations considering 1000 generations. Further reduction is 
expected in average for a larger number of generations, however the computational cost would significantly increase. 
The average genetic algorithm calculation time for 1000 generations, using a Pentium V with 1.5GHz, is 32 seconds. 
Note however from Fig. 7 that if e.g. 4mm end-effector errors are tolerable in this example, then this calculation time 
can be lowered to 3.2 seconds as the number of generations is reduced to 100. 

 
5. Conclusions 
 

In this work, a pneumatic binary flexible manipulator was modeled. The manipulator consisted of n links with 3 
chambers each that could be either pressurized or not. By combining the binary state of each chamber, desired end-
effector positions and trajectories can be obtained. The inverse kinematics of this discrete system was evaluated using 
genetic algorithms. Simulation results demonstrated the efficiency of the algorithm when compared to random search 
methods, reducing the end-effector errors by a factor of 40 over 1000 generations. 
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Figure 7. Evolution of the RMS end-effector error obtained at each of the 1000 generations 
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