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Abstract. It was developed a computational code to simulate the flow over a NACA0012 airfoil. Numerical simulation 

was performed to resolve the Reynolds-averaged Navier-Stokes (RANS) equations system that models a compressive 

turbulent flow. It was generated algebraically a structured "O" shape mesh and various refinements could be made. 

The differential equations system was discretized using the finite volume method and the Jameson explicit scheme was 

implemented. Artificial viscosity terms were added with a non-linear model. The one equation turbulence model of 

Spalart and Allmaras it was implemented to resolve the turbulence closing problem. At the beginning Euler 

formulation was used and we run cases of transonic inviscid flow over the airfoil. We compared the solutions with the 

results of other numerical methods found in the literature. Finally, the Spalart and Allmaras turbulence model was 

used for the Navier-Stokes formulation and the results were compared with experimental data of Harris and others 

numerical results got from the Baldwin and Lomax algebraic turbulence model. 
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1. INTRODUCTION  
 

Increasingly, the use of computational tools and simulations in aerodynamics has reduced the projects that use 

prototypes in real physical situations which tend to have higher costs like the wind tunnel tests. The growing capacity of 

processing and storage of computers in recent years is allowing a more detailed modeling of the problems and the use of 

more refined meshes. 

The numerical solution in cases involving aerodynamic flow can begin when the laws that govern these processes 

are expressed in mathematical form in terms of differential equations. 

The differential equations express the principle of conservation. Each equation uses a physical quantity as the 

dependent variable and means that there must be a balance between the various factors that influence the variable. The 

dependent variables of these equations typically represent specific properties and the terms in a differential equation of 

this type show an influence on volume (Patankar, 1980). A differential equation is a compilation of such terms, each 

representing an influence on a volumetric basis and all the terms together means a balance or conservation. The 

theoretical prediction of the physical phenomena of interest is governed by a system of differential equations. 

Therefore, it is necessary to develop ways to solve this system.  

From the end of the eighties with the advent of supercomputers and constant increase in storage capacity and 

computational speed, it made possible the development of codes able to solve the Reynolds-averaged Navier-Stokes 

(RANS) equations. The process of averaging of the dependent variables is to divide them into two parts, one being the 

average in time and the other the fluctuation on the average, creating new terms known as the Reynolds stresses. To 

close the problem, it is necessary to develop ways to evaluate these new quantities. Thus it was created the models of 

turbulence. A common classification of models of turbulence is in accordance with the number of additional partial 

differential equations to be solved (Anderson, 1984). The simplest algebraic models are considered models of zero 

equation. The simplicity and low computational cost led to the popularization of algebraic models such as Cebeci and 

Smith (1974) and the Baldwin and Lomax (1978). 

To achieve a more generalized application were developed turbulence models of one equation that adds a turbulent 

transport equation to the Reynolds-averaged Navier–Stokes equations like the models of Baldwin and Barth (1990) and 

Spalart and Allmaras (1992). All turbulence models have its limitations; this area is a major challenge within of 

Computational Fluid Dynamics (CFD). The latest works done to simulate numerically compressible turbulent flows 

over airfoils use algebraic turbulence models. This led the authors to develop a code based on finite volume method and 

implement the one equation turbulence model of Spalart and Allmaras to solve the system of Reynolds-averaged 

Navier–Stokes equations. 

 

2. THEORETICAL FORMULATION 
 

2.1. Fundamental Equations 
 

The fundamental equations of fluid dynamics are based on the universal laws of conservation (Anderson, 1984):  

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 



1. Conservation of mass  

2. Conservation of momentum 

3. Conservation of energy 

 

2.2 Navier-Stokes Equations 

 
The nomenclature of the classical fluids mechanics refers to the Navier-Stokes equations as the equations of 

momentum for a Newtonian fluid. However, in CFD the terminology Navier-Stokes includes all the partial differential 

equations that model the flow field plus the constitutive relations needed.  

 

2.3 Conservative form of Navier-Stokes equations 
 

Formulations based on non-conservative partial differential equations can lead to numerical difficulties in situations 

where the coefficients may be discontinuous as in flows with shock waves. Therefore, it must develop the partial 

differential equations as conservative - or divergent - which has the property that the coefficients are all constant or, if 

variable, its derivatives do not appear in the equation (Anderson, 1984). 

For a perfect gas without generating heat and disregarding field forces, the conservative form of Navier-Stokes 

equations using Einstein indicial notation can be written as: 
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where the viscous stresses tensor and the heat flux vector are given by 
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2.4 Reynolds Equations for turbulent flow 

 
Although the Navier-Stokes equations model all the physics of the problem to be studied, capture all scales of 

turbulence that occur in the flow would need computational mesh so fine that would make the numerical solution 

prohibitive. What is usually done is leave the details and focus on the average values of properties. The result of this 

process is a system of equations known as Reynolds-averaged Navier–Stokes equations. 

You can replace each variable by its two parcels in the Navier-Stokes equations and taking the mean of each 

equation, the resulting system is the Reynolds-averaged Navier–Stokes equations:  
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Compared to the Navier-Stokes equations in the original form, the new terms that appear, are the influence of 

turbulent fluctuations on the mean flow.  

Therefore, it is necessary to shape the new terms to close the system of equations. Most models of turbulence based 

on the concept of effective viscosity of Boussinesq. The fundamental idea is to add to the molecular viscosity a 

coefficient of turbulent viscosity as follows: 

 

l tµ µ µ= +                                                          

 

It is assumed that the terms of Reynolds stress can be related to the flow medium in the same way that the tensor of 

viscous stress is related to the rate of deformation of a Newtonian fluid. You can then write the following relationship  
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Similarly, adds to the molecular thermal conductivity a coefficient of turbulent thermal conductivity,  

 

l tk k k= +                                                               

 

The turbulent thermal conductivity, kt , is related to the turbulent viscosity, by the relationship:  
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Where Prt is the turbulent Prandtl number, which for the air, has a value Prt ≈ 0.9 (Bradshaw, Cebeci, 1981).  

The turbulent viscosity, tµ , and turbulent thermal conductivity,
t

k , are not properties of the fluid, unlike the 

molecular viscosity and thermal conductivity. Dependence of tµ e tk  on and the flow is the key difficult to model the 

turbulence. Introducing the hypothesis of Boussinesq, the equations (1), (2) and (3) can be written in terms of average 

quantities: 
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And the tensor of viscous stresses and the vector of heat flux are now given by: 
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2.5 Vector form of equations 
 

Before applying a finite volume algorithm to the fluids dynamics equations it is convenient to write the equations in 

a compact vector form. Therefore, the Reynolds-averaged Navier–Stokes equations, in the conservative form, in two-

dimensional Cartesian coordinates, can be written in the following way:  
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Where Q is the vector of conserved variables and E and F are the vectors of flow in the directions x and y, 

respectively, given by: 

 

,
v

u
Q

e

ρ

ρ

ρ
=

 
  
 
 
  

�

�

( )

2

,

u

u p
xx

E
u v

xy

e p u u v q
xx xy x

ρ

ρ τ

ρ τ

τ τ

+ −

=
−

+ − − +





 
 
 
 

�

�

� �

� � � ( )

.2

v

u v
xy

F
v p

yy

e p v v u q
yy xy y

ρ

ρ τ

ρ τ

τ τ

−

=
+ −

+ − − +





 
 
 
 

�

� �

�

� � �

 
 

It is usual to split the flow vector in term of inviscid and viscous parts as follows: 
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Where the subscript e represents the inviscid components for the Euler equations and the subscript v represents 

viscous components to be used in the Navier-Stokes equations. 

 

2.6 Dimensionless form of the Navier-Stokes equations 

 
The equations of fluid dynamics are often placed in dimensionless form. The advantage is that the flow variables are 

normalized so that their values are placed between certain limits prescribed such as zero and one. From the numerical 

point of view, this tends to reduce the spread of errors, since all the variables will be of the same order of magnitude. 

Moreover, the characteristic parameters such as Mach number, Reynolds number, Prandtl number, can be varied 

independently (Anderson, 1984). 

 

3. NUMERICAL IMPLEMENTATION 
 

To obtain the discretization equations from the partial differential equations system, the finite volume method uses 

the control volume formulation.  

 

3.1 Form integral of the Navier-Stokes equations  

 

We define the vector P
�

 as: 
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Where E and F are the flow vectors defined by equation (19), 
x

i
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 and yi
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are the unit Cartesian vectors. The equation 

(18) can then be written as: 
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Integrating the equation (22) for all unit control volumes we obtain: 
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Where 
,i jV  is the volume of a cell and 

,i jS  is the corresponding control volume surface. 
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3.2 The Jameson scheme  

 
The Jameson (1986) finite volume formulation used in this work employ a Runge-Kutta integration scheme of five 

stages to march in time. The method has a fourth order accuracy in time and second order in space. The properties are 

evaluated as the average of the values in the cells on both sides of the face. Thus, the scheme reduces to an 

approximation of a space centered difference on a Cartesian mesh. As a result, it requires the use of terms of numerical 

dissipation to ensure stability (Jameson, 1981). The terms of artificial viscosity are evaluated at all stages of the Runge-

Kutta scheme to increase the stability (Arias Garcia, 2006). Thus, adding the terms of artificial viscosity, we obtain: 
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Where ( ),i j
Da Q  is the artificial viscosity term and ( ),e i jT Q  is the discrete approximation of all the fluxes crossing 

the surface of the control volume, 
,i jV . 

 

3.3 Initial Conditions 

 
The initial conditions must be set to start the iterative process. In this case, we use the properties values of the non-

disturbed flow throughout the computational grid. 

 
3.4 Boundary Conditions 

 
One of the most important tasks of a numerical simulation is the correct implementation of the boundary conditions. 

Basically, we can define three types of boundaries for the flow over the NACA 0012 airfoil which we resolved in this 

work: solid wall, remote and symmetrical boundaries. As it is a two-dimensional case, four conditions at each boundary 

are necessary to resolve the problem. 

 

3.5 Spalart and Allmaras turbulence model 
 

The aerodynamics community is willing to invest in a new generation of turbulence models, more expensive than 

the algebraic models, but with a broader range in terms of flow and complexity of the mesh. In the Spalart and Allmaras 

one equation model, one transport equation for turbulent viscosity is assembled using empiricism and arguments of 

dimensional analysis, Galilean invariance, and a selective dependence on molecular viscosity (Spalart, Allmaras, 1992). 

The equation includes a term of not viscous destruction that depends on the distance to the wall. Unlike algebraic 

models and the first models of one equation, this is local in the sense that the equation in one point does not depend on 

the solution of a point elsewhere. It is therefore compatible with any mesh structure. The solution near the wall is less 

difficult. The conditions of wall and non-disturbed flow are trivial. The model produces laminar-turbulent transition 

relatively smooth, at specified points by the user. A simple turbulence index is provided to determine the regions of 

boundary layer where the model is enabled. The terms of transition have been deactivated, taking into consideration the 

fully turbulent flow. The model was calibrated in boundary layers with gradients of pressure.  

The turbulent viscosity is given by: 
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ν  is the molecular viscosity and ρ  is the local density. The variable of Spalart-Allmaras, ν� , follows the following 

transport equation: 
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Since 
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d is the distance to the nearest wall and S is the magnitude of vorticity given by: 
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The function wf   is given by: 
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The constants used in the model are: 
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The boundary conditions are established defining values of ν� . The wall condition is 0ν =� . 

 

4. RESULTS 

 

4.1 Euler Formulation for transonic flow over a NACA 0012 airfoil profile 

 
The problem was solved using a structured mesh type “O” around the airfoil. The mesh contains 189x43 points. The 

external boundary is located at a distance of 20 chords of the profile and all the lengths were turn into dimensionless by 

the chord of the airfoil.  

In all cases, the initial conditions were considered the values of the properties of non-disturbed flow, defined as: 

 
2= 101325 N/m ,p∞

3= 1.223 kg/m ,ρ∞ = 340.2 m/sa∞ ,
=1.4.γ

 

 

The boundary condition in of the wall airfoil is the condition of slipping in the case of the Euler formulation. The 

model of nonlinear artificial viscosity was used for all cases. The numerical convergence criterion was established for a 

maximum density equal to 91 10−× . 

The results for the pressure coefficients pC  are compared with other numerical results available in literature and we 

show the pressure profile and Mach number around the airfoil for each case. In this phase, the angle of attack α  was 

varied up to two degrees to ensure that the flow is always glued to the surface of the airfoil and do not occur any regions 

of separation. 
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4.1.1 Case 1, M 0.8
∞∞∞∞

====  and α = 1.25°α = 1.25°α = 1.25°α = 1.25°    

    

In the first case was performed a simulation of a transonic flow with Mach number 0.8M∞ =  and with an angle of 

attack 1.25α = ° . A strong shock wave appears in the airfoil upper camber and other weaker appears in the lower 

camber. The distribution of pressure shown in Fig. 1 is compared with the work of Oliveira, Kroll and Jain apud 

Oliveira. The results presented in this work are in good agreement with those presented by Oliveira, and Kroll and Jain. 

The pressure contours and Mach number for a region near the airfoil are shown in Fig. 2. Figure 3 shows the numerical 

convergence curve where the stopping criterion of the program was achieved in 35424 iterations. 

 

            
 

Figure 1: Comparison of Cp along the chord of the airfoil for 0.8M∞ =  and α=1.25°. 

 

     
 

Figure 2: Contours of pressure and Mach number for 0.8M∞ =  and α=1.25° 

 

 
 

Figure 3: Curve of numerical convergence for 0.8M∞ =  and α=1.25°. 

 

 



4.1.2 Case 2, M 0.85
∞∞∞∞

====  and α = 1.0°α = 1.0°α = 1.0°α = 1.0°    

 

The second simulation was performed for a transonic flow with Mach number 0.85M∞ = , and an angle of attack 

1.0α = ° . The pressure distribution on the airfoil shown in Fig. 4 is compared with the work of Oliveira and Kroll and 

Jain. Again, the results presented in this work are in good conformity with those presented by Oliveira, and Kroll and 

Jain. The pressure contours and Mach number for a region near the airfoil are shown in Fig. 5. Figure 6 shows the curve 

where the numerical convergence criterion for stopping the program was achieved in 40,660 iterations. 

 

            

 

Figure 4: Comparison of Cp along the chord of the airfoil for 0.85M∞ =  and α= 1.0 ° 

 

     
 

Figure 5: Curves of pressure and Mach number for 0.85M∞ =  and α= 1.0 ° 

 

 
 

Figure 6: Numerical curve of convergence for 0.85M∞ =  and α= 1.0 ° 

 

4.2 Formulation of Navier-Stokes for compressible turbulent flows over a NACA 0012 airfoil profile  

 
To simulate the viscous turbulent flow over NACA 0012 airfoil was added the one equation turbulence model of 

Spalart and Allmaras to the code developed. The applied Spalart and Allmaras turbulence model was developed from 

the version of the work of Castro (2001). The terms of transition have been deactivated, taking into consideration the 

fully turbulent flow. The meshes were refined near the wall of airfoil as shown in Fig. 7 to capture the viscous effects in 

the region of the boundary layer. The code of Spalart and Allmaras model requires that the nearest point on the wall is 

at y
+  
≈ 1 (Spalart, Allmaras, 1994). 



 

       
 

Figure 7: Refinement of the mesh near the leading edge of NACA 0012 airfoil.  

 

The mesh used contains 189x43 points. The explicit scheme of Jameson was used for both cases with a CFL number 

equal to 0.2. 

Flow on the NACA 0012 airfoil is widely used as reference in CFD, because of the large number of experimental 

data available. Two cases were simulated for different Reynolds numbers, Mach numbers and angles of attack. The 

solutions were compared with experimental data of Harris (1981) and numerical results obtained by Arias Garcia (2006) 

using the algebraic turbulence model of Baldwin and Lomax. 
 

4.2.1 Case 1, Reynolds 63 10×××× , M 0.5
∞∞∞∞

====  and α = 5.8α = 5.8α = 5.8α = 5.86666°°°°    

 

The first simulation for a turbulent flow case was made with Reynolds number of 63 10× , Mach number 0.5M∞ =  

and angle of attack α  = 5.86°. The chord for this Reynolds and Mach numbers is 0.2767 m. The pressure distribution 

shown in Fig. 8 is compared with the experimental data of Harris and the numerical solution obtained by Arias Garcia 

using the algebraic turbulence model of Baldwin and Lomax. As shown in Fig. 8, the pressure coefficient distribution 

along the airfoil using the Spalart and Allmaras turbulence model is closer to the experimental data of Harris than the 

algebraic model of Baldwin and Lomax. Comparing with the experimental data, Cn = 0.626, the coefficient of normal 

force obtained with the Spalart and Allmaras model was Cn = 0.629. This is less than 0.5% of error, while the error 

obtained with the Baldwin and Lomax model was close to 1%. The curves of pressure and Mach number for a region 

near the airfoil are shown in Fig. 9. Figure 10 shows the curve of numerical convergence where the criterion for 

stopping the program was achieved in 24951 iterations. 
 

         
 

Figure 8: Distribution of pressure coefficient M ∞ = 0.5 andα  = 5.86. (a) Present work and (b) Arias Garcia. 

 

     
 

Figure 9: Curves of pressure and Mach number for M ∞  = 0.5 and α  = 5.86. 

 



 
 

Figure 10: Curve of numerical convergence for M ∞  = 0.5 and α  = 5.86 

 

4.2.2 Case 2, Reynolds 69 10×××× , M 0.74
∞∞∞∞

====  and α = −0α = −0α = −0α = −0....14°14°14°14°    

 

The second simulation to turbulent case was performed for a flow with Reynolds number equal to 69 10× , Mach 

number 0.74M∞ =  and angle of attack α =- 0.14°. The chord for this Reynolds and Mach numbers is 0.56 m. The 

distribution of pressure, shown in Fig. 11 is compared with the experimental results of Harris and the numerical solution 

obtained by Arias Garcia using the algebraic turbulence model of Baldwin and Lomax showing good conformity 

between the results. The curves of pressure and Mach number for a region near the airfoil are shown in Fig. 12. Figure 

13 shows the curve of numerical convergence where the criterion for stopping the program was achieved in 38,332 

iterations. Here, the coefficient of normal force obtained with the Spalart and Allmaras model, Cn = 0.020, was the same 

as the experimental data of Harris and the solution found using the Baldwin and Lomax model. 

 

         
 

Figure 11: Distribution of pressure coefficient for M∞
 = 0.74 and α = -0.14. (a) Present work and (b) Arias Garcia. 

 

     
 

Figure 12: Curves of pressure and Mach number for M ∞  = 0.74 and α  =-0.14 

 



 

 
 

Figure 13: Curve of numerical convergence for M ∞  = 0.74 and α  =-0.14 

 

5. CONCLUSION 
 

The Spalart and Allmaras one equation turbulence model was implemented numerically to close the Reynolds-

averaged Navier–Stokes (RANS) equations that model the compressible turbulent flow over a NACA 0012 airfoil. 

Despite being more expensive than the algebraic models, the Spalart and Allmaras one equation model has a broader 

range in terms of flow and complexity of the mesh. The finite volume method was used to discretize the partial 

differential equations system and the Jameson explicit scheme was implemented. Initially, the Euler formulation was 

used and results for the pressure distribution were obtained for two cases of non-viscous transonic flow on the airfoil. 

The solutions were compared with other numerical methods available in the literature and showed good conformity 

between the results. Finally, the Spalart and Allmaras one equation turbulence model was used for the Navier-Stokes 

formulation and the solutions were compared with experimental data of Harris and other numerical solutions obtained 

from the algebraic turbulence model of Baldwin and Lomax presenting good conformity between the results. 

 

6. REFERENCES 
 

Anderson, D. A., Tannehill, J. C., Pletcher, R. H., 1984, Computational fluid mechanics and heat transfer, New York: 

McGraw-Hill.    

Arias Garcia, O. M., 2006, Numerical simulations of compressible flows over airfoils.137 f. Thesis of master of 

sciencies – Aeronautics Institute of Technology, São José dos Campos. 

Baldwin B. S., Barth, T. J., 1990, A one-equation turbulence transport model for high Reynolds number wall-bounded 

flows, NASA TM 102847. 

Baldwin, B. S.; Lomax, H., 1978, Thin layer approximation and algebraic model for separated turbulent flows, AIAA 

paper 78-257,  AIAA 16th AEROSPACE SCIENCES MEETING, Huntsville, Alabama.  

Bradshaw, P.; Cebeci, T., Whitelaw, J. H., 1981, Engineering calculation methods for turbulent flow, Academic Press, 

London. 

Castro, B. M., 2001, Multi-Block Parallel Navier-Stokes Simulation of Unsteady Wind Tunnel and Ground Interference 

Effects, Naval Posgraduate School, Monterey, California. 

Cebeci, T., Smith, A. M. O., 1974, Analysis of turbulent boundary layers, Academic Press, London. 

Harris, C., D., 1981, Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the langley 8 foot 

transonic pressure tunnel. Langley Research Center: NASA. (NASA Technical Memorandum, 81927). 

Jameson, A., Mavriplis, D., 1986, Finite volume solution of the two-dimensional Euler equations on a regular 

triangular mesh, AIAA Journal, vol. 24, No.4, pp. 611-618. 

Jameson, A., Schimidt, W., Turkel, E., 1981, Numerical solution of the Euler Equations by finite volume methods using 

runge-kutta time-stepping schemes. In: FLUID AND PLASMA DYNAMICS CONFERENCE, 14, Palo Alto. Palo 

Alto: AIAA. Paper No.81-1259 

Johnson, D. A., King, L.S., 1985, A Mathematically simple turbulence closure model for attached and separated 

turbulent boundary layers, AIAA Journal, vol. 23-11, pp. 1684-1692. 

Kroll, N.; Jain, R. K., 1987, Solutions of the two-dimensional Euler equations – experience with a finite volume code, 

DFVLR-FB 87-41. 

Oliveira, L. C., 1993, Uma metodologia de análise aeroelástica com variáveis de estado utilizando técnicas de 

aerodinâmica computacional. 100 f. Dissertação de Mestrado - Instituto Tecnologico de Aeronáutica, São Jose dos 

Campos. 

Patankar, S. V.,1980, Numerical heat transfer and fluid flow, Washington: Hemisphere Publishing Corporation. 



Spalart, P. R., Allmaras, S. R., 1992, A one-equation turbulence model for aerodynamic flows. In: 30
th

 AEROSPACE 

SCIENCES MEETING & EXHIBIT, 1992, Reno. Proceedings... Reno: AIAA. (AIAA-92-0439) 

Spalart, P. R., Allmaras, S. R., 1994, A one-equation turbulence model for aerodynamic flows, La Recherche 

Aérospatiale, No. 1, pp. 5-21. 

 

7. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 


