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Abstract. Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the
identification of mathematical models, typically nonlinear systems, is vital in many fields of engineering. A variety of
system identification techniques are applied to model the processes dynamic. Recently, the identification of nonlinear
systems by genetic programming (GP) approaches has been successfully applied in many applications. GP is a
paradigm of evolutionary computation field based on a structure description method that applies the principles of
natural evolution to optimization problems and its nature is a generalized hierarchy computer program description.
GP adopts a tree structure code to describe an identification problem. Unlike the traditional approximation methods
where the structure of an approximated model is fixed, the structure of the GP tree itself is modified and optimized and,
thus, there is a possibility that GP trees could be more appropriate or accurate approximating models. This paper
proposed a GP method combined with an orthogonal least squares (OLS) algorithm to estimate the contribution of the
tree branches to the accuracy of the discrete polynomial NARX (Nonlinear AutoRegressive with eXogenous inputs)
model. The nonlinear system identification procedure, based on a NARX representation and a GP optimization
approach built on adaptive probabilities using chaotic sequences, is applied to the case study of an experimental
poppet valve. Poppet valves are normally used in combustion engines to open and close the intake and exhaust ports
on the cylinder head. The very well machined adjust between seat and poppet gives the sealing feature that is improved
every time that the pressure inside the cylinder rises up pushing the valve head against its seat. The modeled device
controls the amount of recirculated gases and it is used in the automotive industry to control the emissions levels on
combustion engines. The identification results demonstrate that the GP with OLS is a promising technique for NARX
modeling.

Keywords: nonlinear identification, poppet valves, genetic programming, NARX modeling.

1. INTRODUCTION

Developing models from observed data, or functeariing, is a fundamental problem in engineerirgjesyis, such
as control systems, supervision approaches andicpoed methods. System identification is the praged of
constructing a mathematical model from input-outgata for a dynamic system under testing and cteraing the
system behaviors. The identification of dynamiclitear systems, which pose problems and requingisok distinct
from their linear counterparts, is a hard task easahstrated by the effort devoted by researchetlseriast decades.
Several techniques have been proposed for nonlisesiem identification (Giannais and Serpedin, 2@illings,
1980; Ljung, 2001; Haber and Unbehauen, 1990).

In recent years, genetic programming (GP) (Letvel., 2006; Beliagiannigt al., 2005; Yang, 2006; Zhang and
Nandi, 2007), a member of the evolutionary compaemafield, has been applied to fault detection, elod) and
identification of nonlinear systems. GP is a statizgorocess for automatically generating compptegrams and was
introduced by Koza (1992), based on the idea oétiemlgorithms. An advantage of GPthat it can evolve a solution
automatically from the training data and does mmjuire an assumption regarding the mathematicaleimaa the
model’s structure or size of the decision tree-tassdution.

This paper investigates a GP method based on tymiogedure of crossover and mutation probabilitied an
orthogonal least squares (OLS) algorithm to esgntia¢ contribution of the branches of the treehodccuracy of the
discrete polynomial NARX (Nonlinear AutoRegressiwégh eXogenous inputs) model. The identificatiorogedure
using GP based on OLS for NARX nonlinear identiiiwa validated in this paper was inspired in Madaal. (2005)
including the tuning procedure of crossover andatiom probabilities.

To illustrate the power of the proposed GP methagipin NARX identification, the experimental dathtained of
a poppet valve is considered. Poppet valves ammadty used in combustion engines to open and dloséentake and
exhaust ports in the cylinder head. The very welthined adjust between seat and poppet gives dtiagéeature that
is improved every time that the pressure insidecti@der rises up pushing the valve head agaisstaat. In this work,
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a poppet valve, driven by an electrical motor ialeated. This device is used in the automotive shguo control the
emissions levels on combustion engines by comtigolihe gases recirculated.

The remainder of this paper is organized as followsSection 2, the fundamentals of system iderdtfon are
presented. The theoretical background of GP methautroduced in Section 3. Description of casalgtaf a poppet
valve and the identification results are both comi@e in Section 4. Finally, the conclusion andHartresearch are
discussed in Section 5.

2. FUNDAMENTALSOF SYSTEM IDENTIFICATION

Inferring mathematical models of dynamical systefnesn laboratory or field observations has alwaysrbea
subject of interest in science and engineering.imAportant subdivision of this field addresses tHentification of
nonlinear systems, which pose problems and regoirgions distinct from their linear counterpafsr linear system
identification (Ljung, 1999; Schoukens and Pinteld®91), unique solutions normally exist for ovestatmined
problems where there are more equations than thkeown parameters and the error distribution of ¢kéracted
parameters usually can be calculated from the medsirror.

The linear mathematical model is useful if the uhdieg physical process exhibits qualitatively dianidynamic
behavior to the linear model in the operating poihinterest. However, it is often difficult to negsent the behavior of
the system on its full range of operation usingdinmathematical models. For these reasons, theugrient research
interest in models for nonlinear identification. tinis context, many system modeling and parametentification
techniques have been successfully proposed (sem&saand Serpedin, 2001).

Due to the nonlinear nature of many systems, thpgepinvestigates a GP method combined with OLSr#hgn to
NARX modeling. In this context, the model ident#ton adopted is summarized by the following steps:

Step i) design an experiment to obtain the protgsg/output data sets pertinent to the model appbn
Step ii) examine the quality of measured data, keéngptrends and outliers.

Step iii) construct a set of candidate models basethformation from the experimental data setssjorulation data
sets). This step is the model structure identicat

Step iv) select a particular model from the setarididate models and estimate the model paramekees/using the
experimental data sets (or simulation data sets).

Step v) evaluate how good the model is using aop@idnce criterion.

Step vi) if a satisfactory model is still not oltad in Step v then repeat the procedure eitheSfep i or Step iii,
depending on the problem.

3. GENETIC PROGRAMMING

Evolutionary Algorithms (EAs) are powerful toolseasfor solving difficult real-world problems. Théyave been
developed in order to solve some problems thatisical (mathematical) methods failed to succdigshckle. Many
of these unsolved problems are (or could be tumm®) optimization problems. The solving of an opiiation problem
means finding solutions that maximize or minimizee@r more criteria function (Goldberg, 1989). GRan EA that
produces functional programs to solve a given t&dk, introduced by Koza and his group (Koza, 198#a, 1999;
Koza, 2003), is popular for its ability to learnddén relationships in data and express them auicatigtin a
mathematical manner. GP has already spawned numgteuesting applications.

In the GP paradigm, problems in systems identificafield are viewed as the discovery of computeygpams
through a search process (global optimization) dhasethe rules of natural selection and naturakges. Due to its
population-based nature, GP approaches can avaig brapped in a local optimum and consequentlyehtére ability
to find global suitable solutions.

In GP, solutions to a problem can be representedifferent forms, but are usually interpreted asnpater
programs. The computer programs represent candsdégons to a problem. The typical structure acke individual
can be seen as a tree-shaped structure to reptieeéntlividuals in the evolving population. Ea@ndidate solution or
individual of which has a fitness.

The mentioned trees are typically encode&asgpressions, the syntactic form in Lisp (LISt Resging language)
programming language and the basic units of treegsalled nodes. The GP procedure employs usualbngext-free
grammar declared iBackus-Naur-Form (BNF). The BNF-grammar consists of non-terminadle®and terminal nodes
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and is represented by the sbL {T, P, S}, whereN is the set of non-terminals (function sét)s the set of terminal®
is the set of production rules aBds a member ol corresponding to the starting symbol [33].

The leaf nodes are input variables from tifreninal set T, and internal nodes are operators fromftimetion set F.
Each candidate solution is built from combiningdissible functions and terminals. The functionis¢he operators
and functions such as arithmetic operators of addisubtraction, multiplication, and division aglivas a conditional
branching operator.

In general terms, the steps of a classical gepetigramming approach can be summarized in theviglip steps:

Step i)Initialization of candidate solutions: An initial population with candidate solutionadividuals) is generated.

Step ii) Selection: The individuals that performed better in the eatibn process have more possibilities of being
selected as parents for the new population thanetste Tournament selection is adopted in ordesetect two parents.
According to this strategy, two individuals amohg turrent population are randomly selected, aadtie with higher
fitness win the right to mate. The process is riggabfor the other parent.

Step iii) Crossover: Two randomly chosen sub-trees of the two seleptednts are exchanged to create two offspring.
The crossover rate [%.

Step iv)Mutation: N, duplicates of each offspring are created, and theaininal nodes mutate by replacing the original
values with the neighbor values randomly seleatenhfthe component value set. The crossover radg is

Step v)Replacement: The fitness of the original offspring and theintated versions are calculated to pick up thesfitte
one, which should replace the worst individualhef turrent population if the former is fitter thitue latter.

Step vi) Termination Criteria: If a maximum number of iterationt,,,, is reached, the process stops; otherwise, go to
Step ii.

The performance of GP is sensitive to the choiceaftrol parameters. Choosing suitable parametkresais,
frequently, a problem dependent task and requines/iqus user experience. Proper control parametees
recommended to some certain values to providelguridnm better performance from the two aspectsftéctiveness
and efficiency according to the computational ekpents. Despite its crucial importance, there ds aonsistent
methodology for determining the control parametdran EA, which are, most of the time, arbitraskt within some
predefined ranges (Eibehal., 1999).

Two major forms of setting parameter values musinieationed: parametéuning and parametegontrol (Eibenet
al., 1999). The former means the commonly practiqggat@ach that tries to find good values for the paters before
running the algorithm, then tuning the algorithmingsthese values, which remain fixed during the. rihe latter
means that values for the parameters are changaddie run.

In this paper, an adaptive setting of control patems of crossover and mutation probabilities baseahaotic
sequences in GP is provided. The application cbtib@equences instead of random sequences in &Pakernative
strategy to diversify the population and improve @P’s performance and other evolutionary algortlmpreventing
premature convergence to local minima. One of fheplest dynamic systems evidencing chaotic behaigothe
iterator called the logistic map (May, 1976), whesgation is given by:

2(t) = p(t - 1) - z(t - 1)) 6y

wheret is the sample, ang is a control parameter, O < 4. The behavior of the system of equation (5)reatly
changed with the variation @¢f The value ofz determines whetherstabilizes at a constant size, oscillates betveeen
limited sequence of sizes or behaves chaoticalgnimnpredictable pattern. A very small differeircéhe initial value
of z causes substantial differences in its long-timeabr. Equation (1) is deterministic, displayingaotic dynamics
wheny = 4 andz(1) O {0, 0.25, 0.50, 0.75, 1} (Coelho and Mariani, 2D0@ this casex(t) is distributed in the range
(0,1) providing the initiakz(1) O (0,1) andz(1) = 0.48, as was adopted here. In this caseyahgs ofp. andp,, in GP
method based on chaotic sequences (CHGP) are eobdi§ing the equation (1).

3.1. GENETIC PROGRAMMING FOR NARX IDENTIFICATION

The GP can optimize both the model structure as aglits parameters in applications of identificatimainly
nonlinear identification. Among this class of majethe identification of discrete-time, NARX (namdiar ARX) is
considered in this paper. In the NARX model, thedelaegressors are inpugk) and outputy(k) observations for the
discrete time&k. The NARX model is given by:
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y(K) = f(y(k=1),....y(k = ny),u(k =ty =D,u(k —tg = 2),....u(k =ty —n,)) +e(K), )

where y(k) is system output for the time f is an unknown static nonlinear mappitgis the delay time (dead time),

ny, andn, are the maximum and output lags (often referredstenodel orders), respectively, whii) represents the
modeling error and is assumed to be Gaussian ndike. above SISO (Single-Input Single Output) system
representation can be assumed without a loss &gty since the extension to MISO (Multiple-Ingsihgle-Output)
and MIMO (Multiple-Input Multiple-Output) systems straightforward.

Letting y(k) = f(y(k-D),...,y(k - ny),u(k—d),u(k —=d -1),...u(k —=d -ny)), where y(k) is predicted output for

the timek, the NARX identification problem amounts to redousting the nonlinear mappiri¢ ): 0f .o B=ny+

n, form the sety(k), u(k)), k=1, 2,...,n (Nicolao and Trecate, 1999). Since the mentiomtgsvides a non-uniform

and incomplete sampling of the domairf,cdi generalization problem arises than can e sdiyaésorting to GP.
Linear-in-parameters mathematical models can badtated as:

M
¥ =2 pi O (x(k)) (3)

whereF,, ..., Fy are nonlinear functions (they do not contain patansg x(k) is the regressor vector that consists of
lagged input(s) and output(s) given byk) =[y(k -1),...,y(k—ny),u(k —=d),u(k —d =1),...,u(k =d -ny)], andp, ...,

pv are model parameters (Madsial., 2005). The problem of model structure selectmrinear-in-parameters models
is to find the proper set of nonlinear functions.

There are a vast number of possible structuressehen practice, it is impossible to evaluate &lhem. Even if the
set of possible structures is restricted only tlypmmial models given by (Madat al., 2005):

m m m m m
y(K)=po+ X py Bq (K + X X pyip B (K By () +o+ X X0 pyg, g 1% (K) 4)
=1 in=lip=i1 =1 ig=ig-1 =1

wherep, is a constant term. The construction of a NARX elambnsists of the selection of many structurabpeaters,
which have significant effect to the performancehef designed model.
The number of parameters (number of polynomial &risgiven by (Madagt al., 2005):

d+m)
npz(d!nrw?)" ©)

Analytical resolution of parameter estimation peshlof NARX is a complex task. The GP method conmbiwvéh
the OLS for the structure selection of NARX mod#sit are linear-in-parameters is addressed in ¢histext.
Generally, GP creates nonlinear models in additiofinear-in-parameters models. To avoid nonlinegrarameters
models, the parameters must be removed from thef $etminals; i.e., it contains only variabl@s= {x,(K), ..., Xn(K)},
where x(k) denotes theth regressor variable. During the operation of @, algorithm generates many potential
solutions in the form of a tree structure. Thesmdrmay have terms (sub-trees) that contribute miofess to the
accuracy of the model. In this context, the paranseare assigned to the model after “extractiontheff; function
terms from the tree, and they are determined usie@LS (Korenbergt al., 1998) algorithm with the error reduction
ratio (ERR) measure.

4. DESCRIPTION OF CASE STUDY AND IDENTIFICATION RESULTSUSING GP APPROACHES

In this section, it turns to the description of pepvalve and analysis of the results obtainechbyGP and CHGP
approaches.

4.1. System description

In this work a device, called poppet valve, drivgnan electrical motor is identified. Figure 1 sisothe valve
components and to ease the explanation the whaote i&split in: i) mechanism, ii) sensor, and gigectrical motor.
These components, details of signals acquisitiod, setup of GP approaches for identification of pmipvalve are
described in the next subsections.
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Figure 1. Components of the poppet valve.

4.1.1. Valve mechanism

The object valve concept is based on a poppet \adted by gear train and an electric motor. Thetetemotor is
attached to the first rotary axle and the latetdrsoaxle has a position sensor coupled. The gaar transforms the

rotary movement into a linear movement by usingk that is similar to a connection rod. Figurehdws the valve
mechanism sketch:
Poppet Valve

GAS SOURCE

SensorAxle

| Transmition Gears

Motor Axle

T

Mechanic Housing
Figure 2. Diagram of valve sketch.

Maximum power and speed action will be set by thargrain ratio and by the motor construction. The
source is sealed by a conic poppet that movesrlineehe gas flow trough the valve is set by thee@ngle, head

diameter, cylindrical stem diameter and the pojmosition related to the valve seat. Figure 3 shihwsvalve with full
flow:

Poppet Valve
Opened

e
-

Transmition Gears

GAS SOURCE

SensorAxle

Motor Axle

i

Mechanic Housing

Figure 3. Valve full flow.
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4.1.2. Sensor

The valve design has a position sensor coupletigdatest rotary axle in the gear train. This kafcassembly is
used to avoid that the mechanical clearance, needadorrect gear coupling, affects the contrestesyn. The applied
sensor is a hall-effect sensor, based on magnelicdroperties. A correct coupling is achieved witee valve travel is
totally proportional to the sensor voltage. In artle check the coupling in real valves four newveasamples were
tested. The applied method followed the stepdig)valve is requested to be in ten percent obtt travel; ii) poppet
absolute position is measured using a mechaniecgjegand sensor feedback voltage is taken with &meikr; iii) the
requested position is increased by ten percenttanthst steps (i) is performed again (forwarémion); iv) the steps
il and iii are repeated until the valve reachektfalvel; and v) all the steps are repeated fokacd operation.

All gathered data build up a table and the averegg plot in a graph. Figure 4 shows the averaggegdior sensor
voltage and valve travel according to the requeptesition. In the Figure 4, two set of curves arespnted. Upper
curves are related to the sensor voltage. They shbfttte offset among the acquired values thair@bably related to
the sensor production tolerances. Lower curveseleted to the valve travel and they show greadiity and also
repeatability among the tested objects.

The travel and the sensor correlation clarify @@y control system used in this device should dédd a small
non-proportionality between the signals. A contaipplied to this valve should also foresee a smtiirénce between
the forward and backward operation due lifetimeiregahe increase of clearance caused by the ndriotdn during
the gear engagement.

I

— valve 01
—= valve 02
—&— valve 03
—+— valve 04
—&— average

sensor feedback signal [V]

1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
demanded position [%]

— valve 01

= valve 02
10 H —& walve 03
—+— valve 04
—&— average

valve travel [mm)]

1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
demanded position [%]

Figure 4. Valve travel and sensor voltage.

10

4.1.3. Electrical motor

The electric motor is a common DC type with carboushes, driven by a PWM (Pulse Width Modulatiodue
in order to control the power and consequentlypthgtion forward or backward.

To assure the correct system tuning is neededter hetderstanding on the motor behavior and itgdind test took
place in order to plot the motor power curve. Ada=ll (from O up to 3 KN) was used to determine tiotor power. It
was attached to the end of the poppet and the rddy was hold in the opposite side by a bracletitey the poppet
approximately 5 mm opened. The motor current waseased from O up to 3 Ampere and the strength uneady the
load cell was recorded each 0.2 Ampere. There tsted three new valves and two used ones. Theotst had the
temperature stable on 20 °C during the whole testgulure. The acquired value are presented in &igur
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180 T T T T T
— valve 01
—+ wvalve 02
—& valve 03
—&— valve 04
—4— valve 05

strength [N]

0 A I 1 I I I
0 0.5 1 15 2 25 3

motor current [A]
Figure 5. Motor power curve.

Analyzing the Figure 5, one can conclude that #taration current is among 2.3 A. Despite the fhat the start
power was a bit different among all test samples,middle curve presents small differences betweeifferent test
objects.

In the next subsections, the valve testing in cgrehclosed-loop responses are presented and coednent
4.2. Valvetesting

Some tests were performed to detect the systenvioetzand further model it.

Open-Loop Sep Response: The step response was recorded in an open-laaglitem by supplying the motor with a
Direct Current (DC) constant voltage and acquirihg feedback sensor signal. Figure 6 shows the &ty step
response. It is clear that in an open loop condliti® valve shown a dead time and afterwards ariresponse.

6 T T T T T T T T T
— maotor supply
—— position sensor feedback

(%]
T

voltage W]

time [s]
Figure 6. Open-loop step response.

Closed-Loop Sep Response: A closed loop acquisition was also performed gisinproportional-integral (P1) controller
with an anti-windup function and gain over the tiosi error equal to 197.6. To decrease the meagymioblems five
brand new and six used valves were tested witlsdnge procedure. An input step requesting 100%eof/#fve travel
was made then the position feedback and currepbnsge were recorded.

Figure 7 shows the curve for every tested valvandigg the position feedback and motor current eompdion after
the input step. Most of the valves had almost #maes positioning behavior except two valves thos# dgosition
increasing much more linear than the other valiteis. possible to conclude that every valve askesinalar current
pattern for the movement and the current level déeé on the valve life. Used valves needed moneotuto make the
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same movement as expected. The maximum continuauent for all samples stayed lower thar2.3 A that was
pointed out as current saturation (see Figure 5).

4 T T T T

] [
T T

sensor feedback signallV]

12000

motor current [A]

| | | | |
0 2000 4000 6000 8000 10000 12000
scan

Figure 7. Closed-loop data.

4.3. Data for system identification

In order to avoid the control interferences on $lystem identification all the gains were made uyitand the
integral action was disabled. The PRBS (PseudorarBinary Sequence) was chosen as input signalr&gyresents
the input and output signals for this data acqoisitThese signals are used in identification pdoice based on GP and
CHGP approaches.

100 : : : : : : : 140

90+

80

70r

60

50+

40-

input signal
poppet valve output

30+

201

10F

0

I I I I I I I 220 I I I I I I I
100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

sample sample

-10
0

Figure 8. PRBS response.

GP and CHGP approaches were implemented in MATLABtGWorks). All the programs were run under a
Pentium dual-core processor with 1.73 GHz and 2 ddBRandom Access Memory (RAM). In order to elimmat
stochastic discrepancy, in each case study, 30pérdiEnt runs were made for each of the optimizath@thods
involving 30 different initial trial solutions fahe GP and CHGP approach.

The parameters of the GP approaches are set asvfolpopulation size is 30, generation gap = Ogfection
adopted is the tournament with elitist strategg, thurnament size is equal to 6, the maximum nurobgenerations is
200, and the maximum allowed tree depth is 5. Tesgh parameter adopted for the OLS algorithm iRER.01.

The system identification by NARX model based on {SPappropriate if a performance index is in values
permissible for the user's needs. In this case fithess function for maximization proposes isegiby the multiple

correlation index (also known as tResquared coefficient) for the estimation (optimiaa} phase Ré value) and

validation (test) phaseF{fal value). When the valuR®=1.0 (estimation or validation phases), it indisatee model's



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

accurate approach to the system’s measured dat®? Avalue between 0.9 and 1.0 is considered sufficfent
applications in identification and model-based odltér design (Schaiblet al., 1997).

The first 400 samples of poppet valve system aed @3 the estimation phase, while the remaining S#imples are
used for the validation phase. The maximum inpdt@utput order selected for identification with @®d CHGP aré,
=1,n, = 4, andh, = 4. All of the numeric parameters in GP approadiesign are determined empirically.

The equation with beﬁé (Rét = 0.9996) for the NARX model obtained by CHGP aagh in 30 runs was

y(k) = 0.098800+1.191029 y(k —1) ~1.563875 y(k - 2) + 0.355320 y(k - 3) + (6)
0.000185Y/(k ~1) [i(k —4)

The model of equation (6) presents an error meddfosamples equal to 0.0139 &i@ = 0.9995. On other hand,

the best model obtained by GP in 30 runs preseRéd= 0.9991. It can conclude that a best solutioméolby CHGP

has a slight advantage over the result of GP. B@st result of CHGP approach for the poppet vadvehiowed in
Figure 9.

140 T T
- - — — poppet valve output
120+ estimated output using NARX model |

100

80

60

output signal

40

20

_20 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

sample

20

15+ f

error signal
=)
|

101 4

151 4

_20 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

sample

Figure 9. Best result oRé for NARX modeling obtained by CHGP.
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5. CONCLUSION AND FUTURE RESEARCH

This paper focuses the application of two GP apgites combined with OLS algorithm for structure sibm of a
NARX model. The identification procedure based dd &d CHGP approaches and NARX model was validated
identify a poppet valve system. Results demongirtdtat the CHGP method is a consistent estimat@nvapplied to
identification of NARX models.

Future research is to investigate the performafcoand CHGP approaches for solving optimizatimbfems in
model-based controllers design.
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