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Abstract. This paper presents a scheme for fault-tolerant attitude determination of an Earth-pointing satellite using 
measurements of geomagnetic field, Sun direction and inertial angular velocity. A linearized Kalman filter is employed 
for attitude and angular velocity estimation and its innovation sequence is used as a residual for both fault detection 
and diagnosis. Detection is accomplished by means of a simple chi-square test. When the detection information 
becomes available, a module for diagnosing the fault is activated. The diagnosis problem is formulated through a 
multiple composite hypotheses testing whose optimal solution in the minimum probability of error sense is given by the 
maximum a posteriori decision rule. However, as in the practice the parameters of the fault are unknown, a common 
suboptimal approach is adopted that replaces the true deterministic parameters with their maximum likelihood 
estimates under the considered test statistics. As soon as the fault is diagnosed, the Kalman filter model is updated to 
better represent the new system behavior. The proposed scheme is evaluated by numerical simulation, that shows its 
capability to maintain small errors in attitude and angular velocity estimation when tackling abrupt additive changes 
on sensors. 
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1. INTRODUCTION  
 

The conventional Kalman filter assumes that an accurate stochastic dynamic model of the linear-Gaussian system is 
available. However, in practical situations, the model parameters may deviate from their true values. One of the causes 
for such deviation is the occurrence of faults in sensors. If such model changes are not taken into account, the filter 
performance may seriously degrade or even can show a diverging behavior. Traditionally, this problem is treated by 
augmenting the state vector with variables modeling the parameter errors as either constant or random biases, resulting 
in a high dimensional estimator prone to problems as lack of observability and low convergence rate. To avoid state 
augmentation, some approaches have been proposed in the literature. 

Friedland (1969) presented the two-stage Kalman filter for estimating the states of linear-Gaussian systems subject 
to additive constant bias. Recently, by using an adaptive filtering procedure, this technique has been extended for 
nonlinear systems containing multiplicative unknown random parameters (Kim et al., 2009).  

Willsky and Jones (1976) integrated the Kalman filter with the generalized likelihood ratio test (GRLT) for 
estimating the states of linear systems subject to abrupt additive changes in the state equation that may occur at a 
sporadic time instant. In this method, the GLRT module monitors the innovation sequence of the filter to determine if a 
change has occurred and adjusts the filter accordingly. Deshpande et al. (2008) have extended this approach to treat 
nonlinear systems subject to additive faults in both state and measurement equations. A similar idea was considered in 
Kawauchi (1982) to diagnose abrupt changes in the attitude determination system (ADS) of a hypothetical satellite 
using rate gyros and star sensors. This method was shown by simulation as being capable of accommodating a fault by 
augmenting the filter state vector just with the variables associated with the parameters of the fault that has occurred. 

A scheme for fault-tolerant attitude determination is proposed in the present paper. It is suitable for Earth-oriented 
rigid satellites moving in a low-Earth orbit and it relies on a suite of sensors containing three orthogonal rate gyros, 
three orthogonal magnetometers and two-axis Sun sensors. The scheme uses a Kalman filter based on a linearized 
model that, besides estimating attitude and angular velocity, its innovation is used as a residual for fault detection and 
diagnosis. The diagnosis module follows the Willsky and Jones’ approach. As soon as the fault is diagnosed, the 
Kalman filter model is updated using the estimated fault to better represent the new system behavior. Simulation results 
shows that the proposed scheme is able to maintain small error in attitude and angular velocity estimation when tackling 
abrupt additive changes on sensors. The foregoing contribution is presented in a general way that becomes clear its 
applicability to other fault-tolerant linear state estimation problems. 

This paper presents its method and results in the next 5 sections. Section 2 describes the issues that will be addressed 
here. Section 3 presents the linearized state-space model of the satellite angular motion with respect to an Earth-
pointing reference frame. Section 4 develops a scheme for fault-tolerant attitude determination based on the linearized 
model. Section 5 presents the results of tests of the scheme on simulated data, and Section 6 presents the paper's 
conclusions. 
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2. PROBLEM STATEMENT 
 

Consider the following two Cartesian coordinate systems (CCS): ܵ ൌ ሼݔ, ,ݕ  ሽ is the body fixed frame alignedݖ
with the principal axes of inertia and with origin at the center of mass of the satellite (CM); ܵ ൌ ሼݔ, ,ݕ  ሽ is theݖ
orbital reference CCS, whose origin is also at the CM. It rotates about its negative y-axis so that its z-axis always points 
towards the nadir. See the illustration in Fig. 1. The attitude of ܵ with respect to ܵ is described by the attitude matrix 
ࡰ

, which transforms representations of vectors from ܵ to ܵ. The angular velocity of ܵ with respect to ܵ is 
represented in ܵ by ࣓

.   
 

 
 

Figure 1. Cartesian coordinate systems 
 

Measurements of the local geomagnetic field, ࢈෩, the Sun direction, ࢙, and the inertial angular velocity are 
considered available, ࣓ , but their components may contain additive faults that is assumed here as step-wise. The 
subscript b denotes representation (projection) of vectors in ܵ. Therefore, these measurements are modeled at discrete 
instants of time as: 

   
ሚ܊  ୠሺ݇ሻ ൌ ୠሺ݇ሻ܊  δ܊ୠሺ݇ሻ  Δ܊ୠሺ݇ሻ                          (1) 
  
ୠሺ݇ሻܛ  ൌ ୠሺ݇ሻܛ  δܛୠሺ݇ሻ  Δܛୠሺ݇ሻ 
  
  ୠሺ݇ሻ ൌ ୠሺ݇ሻ  δୠሺ݇ሻ  Δୠሺ݇ሻ 
 

where ࢈, ࢙ and ࣓ are true values of the physical quantities; ሼ࢈ߜሺ݇ሻሽ, ሼ࢙ߜሺ݇ሻሽ and ሼ࣓ߜሺ݇ሻሽ are assumed as 
Gaussian white sequences; finally, ࢈߂, ࢙߂ and ࣓߂ are the additive vectors of faults. The argument ݇ will be omitted 
in the rest of the paper. 
 
Problem 1 – Given ࢈෩, ࢙ and ࣓  and assuming that ܵ does not deviate significantly from ܵ yielding the use of a 
local linearized state and measurement models, then devise a scheme for attitude, ࡰ

, and angular velocity, ࣓
, 

estimation that avoids augmenting the state vector of the Kalman filter with the parameters of the faults.                        
 
3. STATE SPACE MODEL OF THE SATELLITE ATTITUDE MOTION 
 

Subsection 3.1 reviews the kinematic and dynamic equations of motion of a rigid satellite with respect to the orbital 
CCS, ܵ. The attitude, ࡰ

, is parameterized by the Modified Rodrigues Parameters (MRP). Subsection 3.2 presents the 
measurement models, which relates the measurements in (1) to the attitude and angular velocity variables. Linearized 
models will be derived assuming the satellite does not deviate much from the nominal attitude given by ܵ.  
 
3.1. State equations 

 
There exist many forms of parameterization of the attitude matrix ࡰ

 that obviates the problems associated with 
propagation of its nine elements by numerical integration (Santos, 2008). The most popular parameterizations are the 
four-component unit quaternion, the three-component Euler angles and the Modified Rodrigues Parameters (MRP) 
(Shuster, 1993). The quaternion has the advantage of providing global attitude representation, but that is not required 
here due to the small angle assumption for the attitude of ܵ with respect to ܵ. Among the three-component 
parameterizations, MRP is preferable because its kinematic equations avoid trigonometric functions. The nonlinear 
kinematic equation using MRP 

 is given by (Smith, 1982): 
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ୠܕ
୭ሶ ൌ ଵ

ସ
ൣ൫1 െ ݉ୠ

୭ଶ൯۷ଷ  2ሾܕୠ
୭ ൈሿ  ୠܕ2

୭ܕୠ
୭ᇱ൧ୠ

ୠ୭                                          (2) 
 

where ݉
 is the Euclidian norm of 

 and ሾ
 ൈሿ is the cross-product matrix of 

. The relation between MRP and 
the corresponding attitude matrix is: 

 
۲ୠ

୭ሺܕୠ
୭ሻ ൌ ۷ଷ  ቂ8ሾܕୠ

୭ ൈሿଶ െ 4൫1 െ ݉ୠ
୭ଶ൯ሾܕୠ

୭ ൈሿቃ ൫1  ݉ୠ
୭ଶ൯

ଶ
ൗ                     (3) 

 
Let ࣓

 represents the inertial angular velocity of ܵ. The dynamic equation for a rigid satellite is given by (Wertz, 
1978): 

 
ሶ ୠ

ୠ୧ ൌ ۸ିଵൣ൫۸ୠ
ୠ୧൯ ൈ൧ୠ

ୠ୧  ۸ିଵ൫܂ୠ
ୡ  ୠ܂

ୢ൯                                                                                           (4) 
 

where ࡶ is the inertia matrix; ࢀ
  is the control torque vector, which can be produced by actuators such as magnetorquers 

and thrusters; and ࢀ
ௗ is the disturbance torque vector representing, among others, gravity-gradient and residual 

magnetism. 
The inertial angular velocity of the satellite can be rewritten as: 
 
ୠ

ୠ୧ ൌ ୠ
ୠ୭  ୠ

୭୧  
 
ୠ

ୠ୧ ൌ ୠ
ୠ୭  ۲ୠ

୭ሺܕୠ
୭ሻ୭

୭୧                                                                                                                                            (5) 
 

where ࣓
 ൌ ሾ0, െ߱, 0ሿᇱ and ߱ is the orbital rate. For circular orbits, the orbital rate equals the mean angular motion 

݊ ൌ ඥߤ/ܽଷ, where ߤ is the Earth gravitational constant and ܽ is the orbit semi-major axis.   
Thus, substituting Eq. (5) into Eq. (4), using the kinematic equation of the attitude matrix (Wertz, 1978), ࡰሶ  ൌ

െൣ࣓
 ൈ൧ࡰ

, and assuming that ࣓
 is constant, the satellite dynamic equation with respect to the orbital CCS 

becomes: 
 
ሶ ୠ

ୠ୭ ൌ ൣୠ
ୠ୭ ൈ൧۲ୠ

୭ሺܕୠ
୭ሻ୭

୭୧   ۸ିଵൣ൫۸ୠ
ୠ୭  ۸۲ୠ

୭ሺܕୠ
୭ሻ୭

୭୧൯ ൈ൧ሺୠ
ୠ୭  ۲ୠ

୭ሺܕୠ
୭ሻ୭

୭୧ሻ   ۸ିଵ൫܂ୠ
ୡ  ୠ܂

ୢ൯                   (6) 
 

Only the gravity-gradient disturbance torque is considered here. It can be modeled by (Wiesel, 1997):  
 
ୠ܂

ୢ ൌ ଷµ
ୟయ ܀ൣ ൈ ൫۸܀൯൧                                                       (7) 

 
where ࡾ is the unit vector along the zenith. 

By truncating the Taylor series expansion of the nonlinearities in Eq. (2) and Eq. (6) about the equilibrium point 
ഥൣ 

ᇱ, ഥ࣓ 
ᇱ൧

ᇱ
ൌ , the following linearized state equation is obtained: 

 
ሶܠ ൌ ܠۯ   (8a)                                                                                                                                                              ܝ۰
 

where ࢛  ࢀ
 ࢞ ,  ൣ

ᇱ, ࣓
ᇱ൧

ᇱ
 and, 

 

۰ ൌ 
ଷൈଷ
۸ିଵ ൨                                                                                                                                                                 (8b) 

ۯ ൌ ቈଷൈଷ
ଵ
ସ

۷ଷ

ଶଵۯ ଶଶۯ
                                                                                                                                                       (8c) 

 
where, by considering the inertia matrix as diagonal and defining ߪ௫  ሺܬଶଶ െ ଵଵܬଷଷሻܬ

ିଵ , ߪ௬  ሺܬଵଵ െ ଶଶܬଷଷሻܬ
ିଵ  and 

௭ߪ  ሺܬଶଶ െ ଷଷܬଵଵሻܬ
ିଵ , the matrices ଶଵ and ଶଶ are given by:  

 

ଶଵۯ ൌ

ۏ
ێ
ێ
ۍ
ߤ௫ߪ12

ܽଷൗ 0 0

0 ߤ௬ߪ12
ܽଷൗ 0

0 0 ے0
ۑ
ۑ
ې
                                                                                                                           (8d) 
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ଶଶۯ ൌ 
0 0 ߱ሺ1 െ  ௫ሻߪ
0 0 0

െ߱ሺ1  ௭ሻߪ 0 0
൩                                                                                                                 (8e) 

 
Assuming that the satellite moves in a circular Keplerian orbit and it is a rigid body, then Eq. (8a) is time-invariant. 
 
3.2. Measurement equations 

 
The true values corresponding to the measurements are nonlinearly related with the state variables as follows: 
 
ୠ܊ ൌ ۲ୠ

୭ሺܕୠ
୭ሻ܊୭                                                                  (9a) 

 
ୠܛ ൌ ۲ୠ

୭ሺܕୠ
୭ሻܛ୭                                                                                                                                                          (9b) 

 
ୠ ൌ ୠ

ୠ୭ ۲ୠ
୭ሺܕୠ

୭ሻ୭
୭୧                                                                                                                                            (9c) 

 
Thus substituting Eq. (9) into Eq. (1) and linearizing it by truncating its Taylor series expansion about the equilibrium 
point ൣഥ 

ᇱ, ഥ࣓ 
ᇱ൧

ᇱ
ൌ , the desired measurement equation is obtained: 

 
ܡ ൌ ܠ۱   (10)              ܞ

 
where ࢟ ൌ ሾ࢟ଵ

ᇱ , ଶ࢟
ᇱ , ଷ࢟

ᇱ ሿᇱ, ࢟ଵ  ෩࢈ െ ଶ࢟ ,࢈  ࢙ െ ଷ࢟ ,࢙  ࣓  െ ࣓
, ࢜ are formed by the error (noise and fault) 

terms in Eq. (1) and the measurement matrix is given by, 
 

۱ ൌ 
4ሾ܊୭ ൈሿ ଷൈଷ
4ሾܛ୭ ൈሿ ଷൈଷ

۱ଷଵ ۷ଷ

  

 

۱ଷଵ ൌ 4 
0 0 െ߱
0 0 0

߱ 0 0
൩  

 
Note that even though time notion was omited in Eq. (10),  is indeed a time-varying matrix due to its dependence on 
the vector representations in the orbital CCS, ࢈ and ࢙. 
 
4. FAULT-TOLERANT ATTITUDE DETERMINATION 

 
Figure 2 exhibits the fault-tolerant attitude determination scheme that is been proposed in this work. The modules of 

the scheme are described in the following subsections. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
 
 
 

Figure 2. A scheme for fault-tolerant attitude determination 
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4.1. Linearized Kalman filter 
    
A Kalman filter [see (Gelb, 1974) for details] that employs de discretized model corresponding to the state equation 

Eq. (8) and the measurement equation Eq. (10) is used to estimate MRP and angular velocity of the satellite with 
respect to ܵ. Considering the motion is constrained within a region of the state space where those linearized equations 
are accurate approximations, then, for a fault-free system, the innovation ሼࣇሽ of the Kalman filter can be assumed as 
being a white sequence with zero mean and covariance ࢂ computed by the estimator (Anderson and Moore, 1982) as: 

 
܄ ൌ ۱۾|ିଵ۱

ᇱ               (11)܀
 
where ࡼ|ିଵ א  বൈ is the covariance of the predicted estimate of the state and ࡾ א বൈ is the (assumed known) 
covariance of the measurement noise. 

Even though measurements from rate gyros are available, the dynamic model of the satellite is being employed. 
Commonly, this is obviated by using angular velocity measurements in the integration of the attitude kinematic 
differential equation and, additionally, augmenting the state vector with gyro biases, whose estimates are used to correct 
those measurements (Lefferts et al., 1982). However, in this case, as consequence of a bias at some gyro, the innovation 
sequence will exhibit a ramp-wise signature, for which the detection delay is larger.  

 
4.2. Fault detection 

 
Before activating the diagnosis module, detection need to be performed which says that something is going wrong in 

the system. This is accomplished here by simply realizing a chi-square test on the statistics: 
 
ઽ൫܌ۻ൯ ൌ ∑ ૅ

܄′
ିૅ 

ା܌ۻିୀ            (12) 
 
where ܯௗ is the detection horizon. Under healthy condition, in which the innovation ൛ࣇൟ is a zero-mean white 
Gaussian sequence, it can be shown that ߝሺܯௗሻ is a chi-square random variable with ܯௗ݉ degrees of freedom 
(Papoulis and Pillai, 2002),  
 

ε൫Mୢ൯ ~ χሺMౚሻ
ଶ   

 
In this way, given a confidence level of 1 െ  :then the probability of detection is ,ߙ
 

൫ε൫Mୢ൯ א ሾ0, rሿ൯ ൌ  1 െ α  
 
where ݎఈ can be obtained from a chi-square table. Therefore, with probability of false alarm ߙ, a fault is detected if 
ௗሻܯ௧ೌሺߝ   . is called alarm instantݐ ఈ. The time instantݎ

Before describing the diagnosis module, the signatures of each additive measurement fault belonging to a set of 
hypotheses are required to be known a priori. A signature formula is derived in the next subsection.    
 
4.3. Fault signature on the innovation sequence 
 

A common approach to fault diagnosis consists of the statistical processing of the innovation sequence of a state 
estimator (or a bank of state estimators) (Willsky and Jones, 1976), (Prakashi et al., 2002), (Prakashi et al., 2005), 
(Deshpande et al., 2008). These methods require prior knowledge of the fault signatures on the innovation sequence for 
a set of hypothesized faults. Previous works on such approach have computed such signatures recursively. A new look 
into the problem is presented here that bases on a non-recursive formula for fault signatures, which is derived in the 
following by considering the system is linear-Gaussian and the state estimator is the Kalman filter. 

Let the system be described by the following model: 
 
ାଵܠ ൌ ܠۯ   ۰ܝ  ડܟ                                                                                                                                (13a) 
 
ܡ ൌ ۱ܠ  ܞ  ܾ

 
 ሺݐ

 ሻ                                                                                                                                     (13b) 
 

where ࢞ א ব is the state vector and ࢟ א ব is the observed output vector; , , ࢣ e  are known matrices of 
appropriate dimensions; ሼ࢝ሽ and ሼ࢜ሽ are mutually independent Gaussian sequences with known parameters. These 
sequences are also independent of ࢞; ࢌ

 ሺݐ
 ሻ is the ݈-th fault vector at instant ݇. ݐ

  is the fault instant and ܾ
  is the 

magnitude of the fault. 
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Lemma 1 – Let ሼࣇሽ be the innovation sequence generated by the Kalman filter using the model in Eq. (13) assuming 
that ࢌ

 ൫ݐ
 ൯ ൌ . It is well-known that if the system is indeed free from faults, then the innovation is a zero-mean 

Gaussian white sequence, whose covariance, ࢂ, is computed in the filter by Eq. (11). However, considering that in fact 
the fault vector is different from zero and is not compensated in the filter, then at instant ݇, the innovation is given by: 

 
ૅ ൌ ૅ

N   ܾ
 ۵

 ൫ݐ
 ൯                                                                                                                                               (14a) 

 
where ሼࣇ

ேሽ is a zero-mean white sequence with covariance ࢂ and, 
 

۵
 ൫ݐ

 ൯ ൌ െ ۱ ∑ ∏ ିۯ
ିଵ
ୀଵ ሾ۷ െ ۹ି۱ିሿ

ି௧


ୀଵ ିି۹ିۯ
 ൫ݐ

 ൯  
 ൫ݐ

 ൯                                                    (14b) 
 

where ࡷ א বൈ is the Kalman gain; ࡳ
 ൫ݐ

 ൯ א ব is the fault signature vector.                                                           
 

proof. The innovation vector at instant ݇ is defined as ࣇ ൌ ࢟ െ  . is given in Eq࢟ ෝ|ିଵ, where the measurement࢟
(13b) and ࢟ෝ|ିଵ is the expectation of ࢟ conditioned on all the measurements from the start of the estimation to the 
previous instant, ݇ െ 1. This set of measurements is denoted by ࢟ଵ:ିଵ. The KF computes the predicted measurement 
 :ො|ିଵ by means ofܡ
 

ො|ିଵܡ ൌ ۱ܠො|ିଵ                                                                                                                                                    (15a) 
 
ො|ିଵܠ ൌ ିଵሺ۷ۯ െ ۹ିଵ۱ିଵሻܠොିଵ|ିଶ  ۰ିଵܝିଵ  ିଵܡିଵ۹ିଵۯ

N  ିଵ۹ିଵۯ ቀ ܾ
 ିଵ

 ൫ݐ
 ൯ቁ                 (15b) 

 
where ࢟ିଵ

ே  ିଵ࢞ିଵ   .ିଵ, i. e., it is the part of the measurement that is not affected by the fault vector࢜
Thus defining 
 

ିଵ܉ ൌ ିଵሺ۷ۯ െ ۹ିଵCିଵሻ                                                                                                                                 (16a) 
 
ିଵ܊ ൌ ۰ିଵܝିଵ  ିଵܡିଵ۹ିଵۯ

N                                                                                                                        (16b) 
 
ିଵ܌ ൌ ିଵ۹ିଵۯ ቀ ܾ

 ିଵ
 ൫ݐ

 ൯ቁ                                                                                                                              (16c) 
 

then Eq. (15b) can be written as 
 

ො|ିଵܠ ൌ ොିଵ|ିଶܠିଵ܉  ିଵ܊   ିଵ                                                                                                                     (17)܌
 
Then, by recursively substituting Eq. (17) in itself until the past instant ݐ

 , gives rise to 
 
ො|ିଵܠ ൌ …ିଶ൛܉ିଵൣ܉ ො௧|௧ିଵܠ௧܉௧ାଵ൫܉ۃ  ௧܊  ௧൯܌  ௧ାଵ܊  ۄ௧ାଵ܌ … ൟ  ିଶ܊  ିଶ൧܌  ିଵ܊   ିଵ                    (18)܌
 
Note that the terms in Eq. (18) that makes it dependent on the fault vector are those containing ࢊ௧, ,௧ାଵࢊ … ,  .ିଵࢊ
Further, the term in ࢟ making it different from the healthy measurement ࢟

ே is ܾ
 ࢌ

 ൫ݐ
 ൯. In this way, it appears a bias 

in the innovation vector ࣇ which is given by  
 

۳ሼૅሽ  ܾ
 ۵

 ൫ݐ
 ൯ ൌ ܾ

 
 ൫ݐ

 ൯ െ ۱ሺ܉ିଵሾ܉ିଶሼ… ௧ሻ܌௧ାଵሺ܉ۃ  ۄ௧ାଵ܌ … ሽ  ିଶሿ܌   ିଵሻ                                 (19)܌
 
Finally, from Eq. (19), by considering the definitions in Eq. (16), the fault signature vector ࡳ

 ൫ݐ
 ൯ can be written as Eq. 

(14b).                                                                                                                                                                                     
 
Remark 1 – It is noted that there exists a linear relation between the fault signature and its associated fault vectors, 
which would not be true if either system or filter was nonlinear. Even in the case of using an extended Kalman filter, as 
the Jacobian matrices depend on the estimates that in turn depend on faulty measurements, then it is not possible to 
write the fault signature as a linear combination of the fault vectors.                                                                                
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4.3. Fault diagnosis 
 
By hypothesizing a finite set of additive measurement faults for which signatures on the innovation sequence of the 

Kalman filter are given by Eq. (14), the fault diagnosis problem can be formulated as a multiple composite hypotheses 
testing as reviewed in the following. As mentioned earlier, the innovation sequence of the Kalman filter when the 
system is healthy is white and, at the time instant ݇, the innovation vector is ࣇ ൌ ࣇ

ே~ܰሺ,  ሻ. In this case, the jointࢂ
probability density function (pdf) of the set of vectors ࣇିெାଵ: ൌ ିெାଵ:ࣇ

ே  ሼࣇିெାଵ
ே , ିெାଶࣇ

ே , … , ࣇ
ேሽ is given by: 

 
൫ૅିMାଵ:

N ൯ ൌ ∏ ܰሺ, ሻ܄
ୀିMାଵ                                                                                                                            (20) 

 
where ܯ is the diagnosis horizon. The superscript N denotes normal (or healthy) condition. 

In the presence of a fault that has not been compensated in the Kalman filter equations, the set ࣇିெାଵ: shows a 
deterministic signature [see Subsection 4.2] that shifts its mean value away from zero. Therefore, this set shall show the 
following joint pdf: 

 
ሺૅିMାଵ:ሻ ൌ ∏ ܰ൫ ܾ

 ۵
൫ݐ

 ൯, ൯܄
ୀିMାଵ                                                                                                                (21) 

 
where ܾ

 ۵
൫ݐ

 ൯ is the signature at instant ݅ of the hypothesized fault ܪ.  
In the following, the diagnosis is defined as a hypotheses testing. 

 
Definition 1 – The diagnosis (isolation and estimation of the fault) problem can be defined by means of the following 
multiple composite hypotheses testing: 

 
H: ૅ௧ೌିM:௧ೌାMିଵ ൌ ૅ௧ೌିM:௧ೌାMିଵ

N                                                                                                                              (22) 
 
Hଵ: ૅ௧ೌିM:௧ೌାMିଵ ൌ ૅ௧ೌିM:௧ೌାMିଵ

N  ܾ
ଵ۵௧ೌିM:௧ೌାMିଵ

ଵ ൫ݐ
ଵ൯  

 
...  
 
H: ૅ௧ೌିM:௧ೌାMିଵ ൌ ૅ௧ೌିM:௧ೌାMିଵ

N  ܾ
۵௧ೌିM:௧ೌାMିଵ

 ൫ݐ
൯  

 
where ܪ models the absence of faults, while ܪଵ - ܪ model possible faults; ܾ

 ିெାଵ:ࡳ
 ൫ݐ

 ൯ is the signature of the ݈-th 
hypothesized fault ܪ on the set of innovation vectors.                                                                                                        
 

The optimal solution (in the minimum probability of error sense) for the test in Eq. (22) consists of the Bayesian 
maximum a posteriori decision rule, which chooses hypothesis ܪ as being that better explaining the occurred fault if 
(Kay, 1998): 

 
൫Hหૅ௧ೌିM:௧ೌାMିଵ൯  ݏ      ,൫H௦หૅ௧ೌିM:௧ೌାMିଵ൯ ് ݈                                                                                          (23a) 
 
ሺHሻ൫ૅ௧ೌିM:௧ೌାMିଵหH൯  ݏ      ,ሺH௦ሻ൫ૅ௧ೌିM:௧ೌାMିଵหH௦൯ ് ݈                                                                      (23b) 
 

where the likelihood function, ൫ࣇ௧ೌିெ:௧ೌାெିଵหܪ௦൯, is given by: 
 
൫ૅ௧ೌିM:௧ೌାMିଵหH௦൯ ൌ ∏ ܰ൫ ܾ

௦۵
௦൫ݐ

௦൯, ൯܄
௧ೌାMିଵ
ୀ௧ೌିM                                                                                                   (23c) 

 
and the prior probabilities, ሺܪ௦ሻ, ݏ ൌ 1, … , ݄, are assumed to be known.  

It is not possible to hypothesize the parameters (magnitude and fault instant) for each fault, which make difficult to 
solve Eq. (23b) explicitly. A suboptimal approach (known as generalized likelihood ratio test (GLRT)) to overcome this 
problem consists of replacing the true parameters by their maximum likelihood (ML) estimates. In the latter case, the 
detector is given by next theorem.  
 
Theorem 1 – The GLRT for diagnosing additive measurement faults in linear-Gaussian systems modeled by Eq. (13) is 
given by: 
 
Detect ܪ if    
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T൫ૅ௧ೌିM:௧ೌାMିଵ൯  T௦൫ૅ௧ೌିM:௧ೌାMିଵ൯,      ݏ ് ݈                                                                                                    (24) 
 
where 
 

T௦൫ૅ௧ೌିM:௧ೌାMିଵ൯ ൌ ݈݊൫ሺH௦ሻ൯ െ
ቀ

ೞ ቁ
మ

ଶ
∑ ۵

௦൫̂ݐ
௦൯ᇱ௧ೌାMିଵ

ୀ௧ೌିM ܄
ିଵ۵

௦൫̂ݐ
௦൯  ܾ

௦ ∑ ۵
௦൫̂ݐ

௦൯ᇱ௧ೌାMିଵ
ୀ௧ೌିM ܄

ିଵૅ  
 

ݐ̂
௦ ൌ arg max௧

ೞ ሾ௧ೌିM:௧ೌሿא ςሺ ݐ
௦ሻ  

 

ς൫ݐ
௦൯ ൌ െ

൬
ೞቀ௧

ೞ ቁ൰
మ

ଶ
∑ ۵

௦൫ݐ
௦൯ᇱ௧ೌାMିଵ

ୀ௧
ೞ ܄

ିଵ۵
௦൫ݐ

௦൯  ܾ
௦൫ݐ

௦൯ ∑ ۵
௦൫ݐ

௦൯ᇱ௧ೌାMିଵ
ୀ௧ೌିM ܄

ିଵૅ  

 

ܾ
௦൫ݐ

௦൯ ൌ
∑ ۵

ೞቀ௧
ೞ ቁ

ᇲೌశMషభ
సೌషM ܄

షభૅ

∑ ۵
ೞቀ௧

ೞ ቁ
ᇲೌశMషభ

సೌషM ܄
షభ۵

ೞቀ௧
ೞ ቁ

  

 
ܾ

௦  ܾ
௦൫̂ݐ

௦൯                    
 

The proof of the Theorem 1 is omitted here, but similar derivations can be found in Kay (1998).  
 

4.4. Fault accommodation 
 
Since diagnosis has finished at instant ݇  ܯ െ 1 producing an estimate of the actual fault, ܾ

 ࢌ
 ൫̂ݐ

 ൯, the Kalman 
filter need to be compensated in order to yield accurate state estimation. This is accomplished by assuming that the 
hypothesis H is the actual one and that ൣܧ ܾ

 ࢌ
 ൫ݐ

 ൯ห࢟:൧ ؆ ܾ
 ࢌ

 ൫̂ݐ
 ൯, which make possible to approximate the filter 

equation for measurement prediction by: 
 
ොାଵ|ܡ ൌ  ۱ܠොାଵ|  ܾ

 መ ൫̂ݐ
 ൯                                                      (25) 

 
where ࢟ෝାଵ|   .:ሿ࢟|ାଵ࢟ሾܧ
 
5. SIMULATION RESULTS 

 
In this section, the scheme for fault-tolerant attitude determination previously developed is used to estimate the 

attitude and angular velocity of an Earth-pointing spacecraft using measurements from magnetometer, Sun sensors and 
rate-gyros. The satellite is simulated as moving in a low-Earth Keplerian circular orbit with height of 750 ݇݉ and 
inclination of 87o. The attitude dynamic and kinematic equations were integrated using Runge-Kutta 4 with steps of 
 The disturbing torque was composed by gravity-gradient and a random Gaussian signal with mean zero and .ݏ 0.001
covariance of 1.0 ൈ 10ିହ ࡵଷ ܰ݉. The geomagnetic field was modeled by the WMM 2005 (McLean et al., 2004) and 
the Sun direction is modeled by a simple Keplerian model of the Earth rotation about the Sun (Vallado, 2004). Table 1 
presents the covariances of the measurement noises that were assumed as zero-mean white Gaussian sequences. 

 
Table 1. Covariances of the measurement noises 

 
Measurement in Sb Covariance unit 
Geomagnetic field 4.0 ൈ 10ିଵସ۷ଷ ܶଶ       (1) 

Sun direction 1.0 ൈ 10ିସ ۷ଷ െ 
Inertial ang. velocity 1.0 ൈ 10ିଵ ۷ଷ ሺݏ/݀ܽݎሻଶ 

                                       (1) T denotes Tesla. 
 

Only abrupt faults on geomagnetic field and angular velocity components were considered in this brief study. Those 
are listed along with their parameters (fault magnitude and fault instant) in Tab. 2. The components are assumed as that 
projected in the body coordinate system ܵ.     

Monte Carlo simulations consisting of 100 runs were realized for each fault in Tab. 2. The statistics of the estimates 
of fault magnitudes produced by the proposed scheme are shown in Tab. 3. It is noted that accurate fault estimation is 
accomplished. 
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Figures 3 and 4, by taking the fault 1 into account, compare the fault-tolerant ADS (FTADS) with that obviating 
fault accommodation, which is called basic ADS. It was performed 100 runs of the estimation process. Figure 3 
exhibits the angular error in degrees, while Fig. 4 shows the magnitude of the angular velocity error in degrees per hour. 
It is noted that both attitude and angular velocity estimations undergo a diverging behavior in the basic ADS as 
consequence of the fault. On the other hand, as soon as fault is diagnosed and reconfiguration of the Kalman filter is 
realized, the estimates of the FTADS become accurate, experiencing only a graceful degradation when compared with 
the performance that had been producing before the fault instant. 

 
Table 2. Parameters of the simulated faults 

 
Fault number Description Magnitude Instant [s] 

1 Bias in magnetometer x 2.0 ൈ 10ି ܶ 50 
2 Bias in magnetometer y 2.0 ൈ 10ି ܶ 50 
3 Bias in magnetometer z 2.0 ൈ 10ି ܶ 50 
4 Bias in rate-gyro x 5.0 ൈ 10ିସ  100 ݏ/݀ܽݎ
5 Bias in rate-gyro y 5.0 ൈ 10ିସ  100 ݏ/݀ܽݎ
6 Bias in rate-gyro z 5.0 ൈ 10ିସ  100 ݏ/݀ܽݎ

    
Table 3. Statistics of estimates of magnitude of faults using 100 runs 

 
Fault number Mean Std deviation 

1 2.0084 ൈ 10ି ܶ 0.0737 ൈ 10ି ܶ 
2 1.9820 ൈ 10ି ܶ 0.0739 ൈ 10ି ܶ 
3 2.0000 ൈ 10ି ܶ 0.0778 ൈ 10ି ܶ 
4 5.0198 ൈ 10ିସ 0.0994 ݏ/݀ܽݎ ൈ 10ିସ  ݏ/݀ܽݎ
5 5.0164 ൈ 10ିସ 0.0910 ݏ/݀ܽݎ ൈ 10ିସ  ݏ/݀ܽݎ
6 5.0158 ൈ 10ିସ 0.0997 ݏ/݀ܽݎ ൈ 10ିସ  ݏ/݀ܽݎ

 

 
 
                                                        (a) Basic ADS                          (b) Fault-Tolerant ADS 

 
Figure 3. Magnitude of the attitude error in presence of fault 1   

 

 
 

                                                         (a) Basic ADS                        (b) Fault-Tolerant ADS 
 

Figure 4. Magnitude of the angular velocity error in presence of fault 1  
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6. CONCLUSION 
 

A scheme for fault-tolerant attitude determination was proposed in this paper, which is applicable to Earth-oriented 
satellites moving in a low-Earth orbit and having in their suite of sensors three orthogonal magnetometers, three 
orthogonal rate gyros and Sun sensors. Fault-tolerance was reached by means of three modules. The first one is the 
detection module, which says that something is going wrong. The alarm generated by the detection module is used to 
activate the diagnosis module, which performs fault isolation and fault estimation through a generalized likelihood ratio 
test. Finally, as soon as the fault is diagnosed, the fault accommodation module is executed, whose task is to 
compensate the measurement prediction equation of the Kalman filter.      

Simulation results showed that the proposed scheme is able to overcome additive measurement faults whose forms 
are step-wise, while obviating the augmentation of the state vector with measurement biases.  
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