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Abstract. The 3D turbulent jet into a cross flow is a classical and complex 3D flow encountered in many industrial applications. In 
this problem fluid is injected from a round exit with diameter D, velocity Ivy in a cross stream with velocity given by U0. The 
simulation of the flow is performed at CFX 5.5.1 commercial software, using the finite volume method with a tetrahedrical mesh. 
Four of the most industrially used turbulent models are adopted in this work and the results are compared with experimental data 
reported in the literature to determine which model fits better in the study of a 3D turbulent jet. The models adopted are k - ε, k - ω, 
Reynolds stress, and RNG k - ε turbulence models. 
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1. Introduction  
 

The 3D turbulent jet into a cross flow is a classical and complex 3D flow encountered in many industrial 
applications. In this problem fluid is injected from exit with diameter D, with a velocity Vj in a cross stream with 
velocity U0. The study of this flow is related to great number real situations of industrial mixing problems. Mixing 
devices of chemical industry, flows into combustion chambers of aircraft engines, film cooling of turbine blades and 
VSTOL flows, are typical examples of this kind of flow. 

Many works are reported in the literature concerning the jet in a cross flow. An excellent review is presented by 
Margason (1993) where the most important works about this problem are analyzed. This review paper evaluates the 
different features of the 3D flow based in a lot of experimental and numerical results, which have been published during 
the last 50 year. In the present work experimental results of Crabb et al. (1989) will be used for the comparisons of the 
results. 

The cross-stream jet flow has complex 3D physical characteristics enrolling the relationship between the jet, the 
free stream and the injection wall. The jet acts as an obstacle to the free stream, producing a recirculation zone in the 
back region of its body. The wake flow behind the jet in not completely similar to the flow behind obstacles. The 
recirculation patterns are inhibited by the vertical entrainment provided by the jet flow. The momentum exchange 
between the jet and the free stream produces a deformation of the jet as a flexible body, aligning it to the stream 
direction. This deflection, added to the fluid entrainment, induces a secondary flow normal to the trajectory composed 
by a pair of counterotating vortices. This is a typical pattern of the 3D jet giving a kidney shape to its body. Near to the 
wall, a horseshoe vortex and a wake vortex street are other important three-dimensional patterns of this flow. The entire 
set of 3D topological characteristics is very difficult to be simulated by numerical computations. It requires a good 
discretization of the domain, and realistic turbulent models, mainly to describe the near wall effects. 

The topological structures presented in the last paragraph are controlled mainly by inertial and pressure gradients 
effects, as a consequence of the mean momentum conservation. The hydrodynamic turbulence, in this case, has a 
secondary hole. Its influence is observed in the near wall region as well as in the wake of the jet. The turbulence 
influences, weakly, the diffusion of the counterotating vortices and consequently their sizes and their relative positions 
to the jet trajectory. On the other hand, for the heat transfer the turbulence is very important. Mixing effects in the jet 
body due to the counteroteting vortices controls the scalar turbulent diffusion. 

The main objective of this work is to verify which of the turbulent models used here obtains the better results for 
the complex 3D patterns of the 3D jet flow.  
 
2. Governing Equations 

 
For incompressible turbulent flow, the conservation of mass, momentum and energy can be expressed by the 

classical Reynolds Averaged Navier Stokes (RANS) Equations, given by: 
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In those equations U, P and θ are the mean velocity, pressure and temperature fields;ρ, υ and α are the density, 
kinematics viscosity and thermal diffusivity of the fluid; and  uu ⊗  is the Reynolds stress tensor modeled by the 
Boussinesq eddy viscosity assumption, Eq. (4): 
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where υT is the turbulent eddy viscosity, D(U) is the mean rate-of-strain tensor, I is the identity tensor and k is the 

Kinetic energy of turbulence. 
 
3. Turbulence Models  
 
3.1. k - ε Model 
 

The k-ε (k-epsilon) model, proposed by Jones & Lauder (1972), is the industry standard two-equation turbulence 
model. k is the turbulence kinetic energy and is defined as the variance of the fluctuations in velocity. It has dimensions 
of (L2 T-2), e.g. m2/s2. ε is the turbulence eddy dissipation (the rate at which the velocity fluctuations dissipate) and has 
dimensions of k per unit time (L2 T-3), e.g. m2/s3. 

This model is based on the eddy viscosity concept. The turbulent eddy viscosity is modeled by the Prandtl-
Kolmogorov relation, Eq. (5): 
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where ε is the dissipation rate of kinetic energy. This model requires the use of two additional transport equations 

for k and ε given by: 
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In those equations Pk is the production of k which is written in Eq. (8): 
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The standard values of the constants are: 
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3.1. RNG k - ε Model 
 

The RNG k-ε model is an alternative to the standard k-ε  model. It is based on renormalization group analysis of the 
Navier-Stokes equations. The transport equations for turbulence generation and dissipation are the same as those for the 
standard k-ε model, but the model constants differ, and the constant Cε1 is replaced by the function Cε1RNG. The 
transport  equation for turbulence dissipation becomes, Eq. (9). 
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where, 
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and, 
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The standard values of the constants are: 
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3.1. k -ω  Model 

 
One of the main problems in turbulence modeling is the accurate prediction of flow separation from a smooth 

surface. The new models developed to solve this problem have shown a significantly more accurate prediction of 
separation in a number of test cases and in industrial applications. Currently, the most prominent two-equation models 
in this area are the k-w based models of Menter. 

CFX uses the k-ε model developed by Wilcox. The starting point of the present formulation is the k-w model 
developed by Wilcox. It solves two transport equations, one for the turbulent kinetic energy, k, Eq. (13) and one for the 
turbulent frequency, w, Eq. (14). The stress tensor is computed from the eddy-viscosity concept. 
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In addition to the independent variables, the density, r, and the velocity vector, U, are treated as known quantities 

from the Navier-Stokes method. Pk is the production rate of turbulence and is similar to Pk used in the k-ε model. The 
model constants are given by: 
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3.1. Reynold Stress Models (RSM) 
 
These models are based on transport equations for all components of the Reynolds stress tensor and the dissipation 

rate. They are suitable for strongly anisotropic flows. These models do not use the eddy viscosity hypothesis, but solve 
an equation for the transport of Reynolds stresses in the fluid. The Reynolds stress model transport equations are solved 
for the individual stress components. Algebraic Reynolds stress models solve algebraic equations for the Reynolds 
stresses, whereas differential Reynolds stress models solve differential transport equations individually for each 
Reynolds stress component. In CFX-5 the latter of these is implemented. 

The CFX-5 Solver solves the following equations, Eq. (15), for the transport of the Reynolds stresses: 
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where φ the pressure-strain correlation, cS is is 0.22 and P, the exact production term, is given by, Eg.(16): 
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4. Boundary conditions 
 
The jet-to-cross-flow ratio was selected to be 2.3 and the jet Reynolds number was 52000. For inflow surfaces the 

value of velocity, kinetic energy and dissipation fields are predicted. For outlet the relative static pressure over the 
outlet boundary is specified. In the top wall the value of velocity, kinetic energy and dissipation fields are predicted. In 
the sidewalls a free slip condition are imposed. In the bottom walls no slip condition are imposed.  

Close to the solid boundaries the turbulence model does not hold. The computational domain have to be dislocated 
at a distance δ from the solid walls and equilibrium laws for mean velocity are imposed for parallel surface. The wall-
function approach used is an extension of the method of Launder and Spalding. In the log-law region, the near wall 
tangential velocity is related to the wall-shear-stress, tw, by means of a logarithmic relation. The computational domain 
extends for 6 diameters (6D) from the symmetry axis to a free boundary, in the lateral direction, 6D from the wall to a 
free boundary, in the vertical direction, 2.5D from de nom-perturbed inlet to the cross flow inlet and 11.5D from the 
cross flow inlet to exit planes, in the streamwise direction. It is represented in figure (1). 

   

 
 
Figure1. Computational domain. 
 
In the computations a non-uniform grid with 607308 nodes is utilized, with most points concentrated in the regions 

near the jet discharge, in the jet downstream trajectory, and in the symmetry-plane. The grid in the symmetry-plane is 
represented in fig (2) and in a xy plane passing by the center of the jet (3).   

 

 
 
Figure 2. Computational grid in the symmetry-plane.  



 

 
 
Figure 3. Computational grid in a xy plane passing by the center of the jet. 
 

5. Results 
 
For the classical problem of a 3D round jet injected in a cross flow a great number of experimental data is available. 

The numerical simulation performed here corresponds to the CRABB´s experiment (jet-to-cross-flow ratio equal to 
2.3), where a couplet set of results for mean and turbulent fields are given 

The fig. (4) shows the development of the jet in the streamwise direction. The fig. (5) represents a general 
visualization of the mean velocity vectors in the symmetry and near the wall planes. Qualitatively, the computations can 
describe all of the most important mean flow structures reported in the previous works, like the formation of Prandtl 
secondary vortex due to the interaction between the jet and shear, and the recirculation zone behind the jet exit, similar 
to the near wake of circular obstacle in crossflow. 

 

 
 

Figure 4. Development of the jet in the streamwise direction. 



  

 
 
Figure 5. Velocity vectors in the symmetry and near the wall planes. 
 
The computational Jet trajectory agree well with the experimental results and with other numerical works. 
The three-dimensional nature of the flowfield is illustrated by the vector fields of Fig. (6), whish shows the 

secondary velocity fields at different spanwise planes (x/D =1 and 2).It is observed that a counterrotating vortex pair 
starts to appear at x/D =1 and its straight decreases downstream. Also, the pressure drop in the wake region induces an 
inward motion, transporting the fluid from the crossflow toward the jet center plane. Thus, at x/D = 1, the somewhat 
irregular movement near the wall is due to the inward motion, whish is balanced by the outward flow generated by the 
jet on either sides of the jet exit. 

 

 
             X/D = 1                                                                                X/D = 2   

 
Figure 6. Velocity vectors at different spanwise planes. 
 
The streamwise velocity (U) profiles at jet center plane obtained using the different turbulent models are compared 

in fig. (7) with each other and with the experimental results. At x/D = 1 the results of RNG k-ε and RSM turbulence 
models are very close and show good agreement with experimental data. At x/D = 2 and x/D = 4 results of k-ε and k-ω 
become closer to the experimental data. At x/D = 6, where the counterrotating vortex become weaker and the jet is more 
similar to the non disturbed profile, the results of RNG k-ε and RSM shows better agreement with experimental results. 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                     x/D = 1             x/D = 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   x/D = 4                                                  x/D = 6 
 
Figure 7. Streamwise velocity profiles at the jet center plane (y/D = 0) 
 
The streamwise velocity (U) and the crossflow velocity (W) in the symmetry plane obtained using the different 

turbulent models, for different distances from the floor, z/D = 0.75 (fig. (8)) and z/D = 1.35(fig. (9)), are compared with 
each other and with the experimental results. At this profiles the k-ε turbulent model show better results, getting closer 
to the peaks of velocities. 

 
 
 
 
 
 
 
 
 
 

 



  

 
Figure 8. Streamwise velocity and the crossflow velocity in the symmetry plane, z/D = 0.75 
 

 
Figure 9. Streamwise velocity and the crossflow velocity in the symmetry plane, z/D = 1.35 
 
In fig. (10) the same results of fig. (8) and (9) are repeated for a plane with a 0.5 D of displacement in relation of 

the symmetry plane (y/D = 0.5) and in a distance of 0.75D from the floor (z/D=0.75). The numerical results are less 
accurate them the results obtained in the symmetry plane, but the k-ε  turbulent model show the better results again. 

An important aspect in numerical simulation is the computational time. In this aspect the k-ε turbulent model was 
the faster, while the Reynolds Stress Model demanded more computational time, using the same computer. 

 
 
 
 
 
 
 
 
 
 
 
 



 

  
Figure 9. Streamwise velocity and the crossflow velocity in the plane y/D = 0.5, z/D = 0.75 
 

8. Conclusions 
 
In this study, a three-dimensional flowfield of normal jets in a crossflow was computationally simulated. For the 

turbulence modeling, the k-ε, RNG k-ε, k-ω and Reynolds Stress Model were used. The results of numerical simulation 
were compared with previous experimental results for the velocity ratio of 2.3 

The computational results for the main velocity profiles agreed well with experimental data, whereas there are some 
differences in the turbulence kinetic energy. The k-ε turbulent model shows the best results for the velocity 
development profiles and good results in the streamwise velocity profiles. Moreover the k-ε model demands less 
computational time, saving precious CPU time. This unexpected supremacy of the k-ε model can be credited to the 
mash and the boundary conditions used. None of the model was able to catch the peaks of velocities and the correct 
velocity profiles near the floor. 

The problem near the floor may be solved refining the mash near the floor, but this solution will demand a more 
powerful computer.  
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