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In this work we consider the problem of bi-impulsive orbital transfers between coplanar circular or elliptical orbits with minimum
time for a prescribed fuel consumption. We used the equations presented by Eckel and Vinh (1984), that provides the transfer orbit
between non-coplanar elliptical orbits with minimum fuel and fixed time of transfer; or minimum time of transfer for a prescribed
fuel consumption. But in this work we consider only the problem with minimum time of transfer for a prescribed fuel consumption.
The case of minimum fuel and fixed time of transfer was already studied in Rocco (1997) and Rocco et al. (1999; 2002). The case of
orbital transfer between non-coplanar orbits with minimum time for a prescribed fuel consumption was already studied in Rocco et
al. (2000). Then, we modified the equations presented by Eckel and Vinh (1984) to consider the problem of coplanar orbital transfer
and develop a software for orbital maneuvers. This software is available to be used in the next missions developed by INPE. The
original method, developed by Eckel and Vinh, was presented without numerical results in that paper. Thus, the modifications
considering the coplanar case, the implementation and the solutions using this method are contributions of this work. The software
was tested, simulating real maneuvers with success.
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1. Introduction

The majority of the spacecrafts that have been placed in orbit around the Earth utilizes the basic concept of orbital
transfers. During the launch, the spacecraft is placed in a parking orbit distinct from the final orbit for which the
spacecraft was designed. Therefore, to reach the desired final orbit the spacecraft must perform orbital transfers.
Besides that, the orbit of the spacecraft must be corrected periodically because there are perturbations acting on the
spacecraft. Both maneuvers are usually calculated with minimum fuel consumption but without a time constraint. This
time constraint imposes a new characteristic to the problem that rules out the majority of the transfer methods available
in the literature: Hohmann (1925), Hoelker et al. (1959), Gobetz (1969), Prado (1989), etc. Therefore, the transfer
methods must be adapted to this new constraint: Wang (1963), Lion et al. (1968), Gross et al. (1974), Prussing (1969),
Prussing (1970), Prussing et al. (1986), Ivashin et al. (1981), Eckel (1982), Eckel et al. (1984), Lawden (1993) and Taur
et al. (1995). In Brazil, we have important applications with the launch of the Remote Sensing Satellites RSS1 and
RSS2 that belongs to the Complete Brazilian Space Mission and with the launch of the China Brazil Earth Resources
Satellites CBERS1 and CBERS2.

In this work we consider the problem of bi-impulse orbital transfers between coplanar circular and elliptical orbits
with minimum time for a prescribed fuel consumption. This problem is very important because most of the spacecrafts
utilize a propulsion system only capable of providing a fixed value of velocity increment, and the velocity increment is
direct related to the fuel consumption. On the other hand, in many missions it is important to perform the maneuvers in
the minimum time, as for instance in the case of remote sensing satellites because during the maneuver the collected
data are of low quality and therefore they can not be used. Thus, we used the equations presented by Eckel et al. (1984),
add some new equations to consider cases with different geometries, and solved those equations to develop a software
for orbital maneuvers. This software is available to be used in the next missions developed by INPE.

2. Definition of the Problem

The orbital transfer of a spacecraft from an initial orbit to a desired final orbit consists (Marec, 1979) in a change of
state (position, velocity and mass) of the spacecraft, from initial conditions 0r
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Figure 1. Orbital Transfer Maneuver, cf. Marec (1979).

The maneuvers can be classified in: maneuvers partially free, when one or more parameter is free (for example, the
time spent with the maneuver); or maneuvers completely constrained, when all parameters are constrained. In this case
the spacecraft perform an orbital transfer maneuver from a specific point in the initial orbit to another specific point in
the final orbit (for example, rendezvous maneuvers). In this work we consider the orbital transfer maneuvers partially
free, and that the spacecraft propulsion system is able to apply an impulsive thrust. Therefore, we have the
instantaneous variation of the spacecraft velocity.

3. Presentation of the Method

The bases for this method are the equations presented by Eckel et al. (1984). These equations provide the transfer
orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer (MFFT), or the transfer orbit
with minimum time transfer for a prescribed fuel consumption (MTPF). But in this work we study the MTPF problem
considering coplanar maneuvers between circular or elliptical orbits. The MFFT problem has already been studied by
Rocco (1997) and by Rocco et al.(1999, 2002). The non-coplanar MTPF problem was already studied in Rocco et al.
(2000).

The equations were presented in the literature but the method was not implemented neither tested in Eckel et al.
(1984), and, in the non-coplanar case, they used the plane of the transfer orbit as the reference plane but we decide to
use the equatorial plane as the reference plane because in this way it is easier to obtain and to apply the results in real
applications. Using the transfer orbit as the reference plane almost all the results obtained belong to the same specific
geometry, so we change the reference system, adding the equations 1 to 6, to make possible the implementation of a
software. For the coplanar and circular case, we should substitute some equations, eliminating the singularities that
appear when the eccentricity and the difference between the orbits inclinations tend to zero.

Therefore, the method was implemented to develop a software for orbital maneuvers. Thus, the modification, the
implementation and the solutions using this method are contributions of this work. By varying the total velocity
increment necessary to the maneuver, the software developed furnishes a set of results which are the solution of the
problem of bi-impulsive optimal orbital transfer with minimum time for a prescribed fuel consumption.

Initially considering the non-coplanar case, because the solution for the coplanar case can be obtained from the non-
coplanar case eliminating the singularities, we have: given two terminal orbits we desire to obtain a transfer orbit which
performs an orbital maneuver from the initial orbit to the final orbit with minimum time and fixed total velocity
increment. The orbits are specified by the elements shown in the Table 1 (subscript 1: initial orbit; subscript 2: final
orbit; no subscript: transfer orbit):

Table 1 – Elements Characterizing the Maneuvers.

a Semi-major axis
e Eccentricity
p Semi-latus rectum
ω Longitude of the periapsis
i Inclination

Ω Longitude of the ascending node
M Mean anomaly
E Eccentric anomaly



λ Angle between the planes of the initial and final orbits

1β True anomaly of the point N  obtained in the plane of the initial orbit

2β True anomaly of the point N  obtained in the plane of the final orbit

1I Location of the first impulse

2I Location of the second impulse

∆ Transfer angle obtained in the plane of the transfer orbit

1V Velocity increment generated by the first impulse

2V Velocity increment generated by the second impulse

V Total velocity increment
Τ Time spent in the maneuver

1α True anomaly of the point 1I  obtained in the plane of the initial orbit

2α True anomaly of the point 2I  obtained in the plane of the final orbit

1r Distance from point 1I

2r Distance from point 2I

1f True anomaly of the point 1I  obtained in the plane of the transfer orbit

2f True anomaly of the point 2I  obtained in the plane of the transfer orbit

1x Radial component of the first impulse

2x Radial component of the second impulse

1y Transverse component of the first impulse in the plane of the initial orbit

2y Transverse component of the second impulse in the plane of the transfer orbit

1z Component of the first impulse orthogonal to the initial orbit

2z Component of the second impulse orthogonal to the transfer orbit

ih Horizontal component of iV

The geometry of the non-coplanar maneuver is shown in Fig. 2.
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Figure 2. Geometry of the Maneuver.



From the geometry of the non-coplanar maneuver we obtain 1β , 2β , λ  and the transfer angle ∆ :
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Considering that the spacecraft propulsion system is able to apply an impulsive thrust, and that the maneuver is bi-
impulsive, the total velocity increment is:

( )ΧFVVV =+= 21 (7)

The time of the transfer maneuver is:

( )ΧΤ G= (8)

Therefore, the problem is the minimization of Τ  for a prescribed V . If the total velocity increment is prescribed,
being equal to a value 0V , we have the constrained relation:

00 =− VV (9)

Thus, we have the performance index:

( )0VVkTJ −+=  (10)

From Eckel et al. (1984) we know that the solution of the problem depend on three variables: the semi-latus rectum
p  of the transfer orbit and the true anomaly 1α  and 2α  that define the position of the impulses in the initial and final

orbits. Therefore, we have the necessary conditions:
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By eliminating the Lagrange’s multiplier k  from equations 11 we have the set of two equations:
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Evaluating the partial derivatives in these equations and doing some simplifications we have the final optimal
conditions:
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For the coplanar case we should substitute the two previous equations by the following equations:
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which utilize the relations shown in the appendix A.

Thus, we have an equation system composed by Eqs. (9), (15) and (16). Solving this equation system by Newton
Raphson Method (cf. Press et al., 1992) or by the Least Square Method (cf. Rocco, 2002), we obtain the transfer orbit
which performs the maneuver between two coplanar terminal orbits spending a minimum time but with a specific fuel
consumption. Initially we used the Newton Raphson Method, however, after that we decided to use the Least Square
Method because, in this way, it was possible to obtain more accurate results. Other numeric methods can also be used,
but the Least Square Method supplied satisfactory results.

4. Results

Figures (3) to (14) present some results obtained  with the software developed. They not only show the tendency of
the parameters, but they quantify the evolution of the variables studied. The graphs were obtained through the variation
of the total velocity increment necessary to perform the maneuver. Thus, each point was obtained executing the
software to the specific total velocity increment. The points were joined by a line that shows the behavior of that orbital
element.

We utilized as a first example, shown in Figs. (3) to (8), the correction maneuver between two circular coplanar
orbits where the initial orbit have the semi-major axis of 7000 km, and the final orbit have the semi-major axis of 7020
km. We utilized in this example the initial values l  = 7011.94497514 km, 1α  = 0.1 rad, and 2α  = 0.2 rad. The graphs
were obtained through the variation of the total necessary velocity increment from 0.1 to 14.0 km/s.

We utilized as a second example, shown in Figs (9) to (14), the correction maneuver between two elliptical
coplanar orbits where the initial orbit have the semi-major axis of 7000 km, eccentricity 0.015 and longitude of the
periapside 1.0 rad. The final orbit have the semi-major axis of 7020 km, eccentricity 0.015 and longitude of the
periapside 1.0 rad. We utilized in this example the initial values l  = 7011.94497514 km, 1α  = 0.1 rad, and 2α  = 0.15
rad. The graphs were obtained through the variation of the total necessary velocity increment from 0.1 to 11.0 km/s.

5. Conclusion

In Figs. (3) to (6) and (9) to (12) we can verify that when the total velocity increment increases the semi-major axis
and the eccentricity of the transfer orbit also increase, however, the transfer angle and the time spent in the maneuver
decrease. These behaviors occur because when the maneuver is performed with a high value of the velocity increment
the transfer orbit approaches a parabolic orbit, so the eccentricity approaches one. Then, we have a high value of the
semi-major axis and a small value of the transfer angle. In Figs. (7) and (13) we have the true anomaly of the positions
of application of the impulses in the transfer orbit (points 1I  and 2I ). We can verify that, when the necessary velocity
increment increases, the true anomaly of the points 1I  and 2I  approaches to the same value. This is expected because
for a high value of the velocity increment the maneuver can be performed with a small transfer angle. In Figs. (8) and
(14) we can see that when the maneuver spends more time, the velocity increment is smaller than when the maneuver
spends less time. This is expected because when the maneuver spends more time the impulse directions approaches the
movement directions. In these graphs we can see that it was possible to obtain results when we fixed a small value of
the velocity increment, but there is a lower limit which occur when we reach the solution for time free. Besides that, we
should advise that the developed program can not supply the solution for all combinations of the input parameters. For
certain values of the total velocity increment it can be impossible to obtain one solution, because for a very small or
very large values of the total velocity increment the solution can not exist, or the numerical algorithms used in the
program do not converge for the solution, because the initial values used can be too far from the solution. So, it is
recommended a physical analysis of the problem, that takes into account the geometry of the maneuver, to find the
range  of  values  for  the  total  velocity  increment  so  that  it  is  possible  to  accomplish  the  maneuver. Whether  the



Fig. 3: Semi-Major Axis vs. Total
 Velocity Increment.

Fig. 5: Transfer Angle vs. Total
Velocity Increment.

Fig. 7: True Anomaly vs. Total
 Velocity Increment.

Fig.4: Eccentricity vs. Total
  Velocity Increment.

Fig. 6: Time Spent in Maneuver vs.
Total Velocity Increment.

Fig. 8: Velocity Increment vs. Time
Spent in Maneuver.



Fig. 9: Semi-Major Axis vs. Total
 Velocity Increment.

Fig. 11: Transfer Angle vs. Total
 Velocity Increment.

Fig. 13: True Anomaly in the Transfer Orbit
vs. Total Velocity Increment.

Fig.10: Eccentricity vs. Total
Velocity Increment.

Fig. 12: Time Spent in Maneuver vs.
 Total Velocity Increment.

Fig. 14: Velocity Increment vs. Time
 Spent in Maneuver.



solution is a local or global minimum is another question to be solved. As far as we verified, the solution obtained
seems to be a global minimum because, for the same input parameters, but using different initial values, it was not
possible until the moment, to obtain better results. However, the equations presented by Eckel et al. (1984) are the
necessary conditions for a local minimum. Thus, we cannot affirm that the obtained solutions are global minimum. It is
important to notice that the software tests automatically all the results, verifying if the maneuver obtained is just a
mathematical solution or if it can really be implemented. When we use numerical methods there are some solutions,
which satisfy the equations, however, in practice, they are impossible. Concluding, we can verify that these results are
very similar to the results obtained by Rocco (1997) for the non-coplanar MFFT case and by Rocco et al. (2000) for the
non-coplanar MTPF case. Thus it is clear that the MTPF case is almost the converse of the MFFT case. Therefore, both
cases, considering circular and elliptical orbits, coplanar and non-coplanar transfer maneuvers, were studied,
implemented and tested with success. The simulations showed that the software developed can be used in real
applications and it is capable to generate reliable results.
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