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Abstract. This work addresses the classical problem of the hydrodynamic impacting force acting upon a rigid body, during the 
water entry phenomenon. A brief review is presented, covering works from Von Karman (1929), Shifman and Spencer (1951), 
Wagner (1931), Miloh (1981), Moghisi and Squire (1981), Korobkin and Pukhnachov (1988), Cooker and Peregrine (1995), to Wu 
(1998). Special emphasis is given to asymptotic methods, specially addressing those by Cointe and Armand (1987), Molin et al 
(1996) and Faltinsen and Zhao (1997). An experimental investigation on an impacting hemisphere has also been carried out and 
results on measured impacting forces are compared with asymptotic solutions. 
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1. Introduction  
 

The water impact and water entry problem of bluff bodies striking a free surface is a classical problem in 
hydrodynamics. The first analytical studies were performed during the early thirties and were stimulated by an interest 
in the landing characteristics of seaplanes that were first designed at that time. Hence the classical works of Von 
Kármán (1929), who approximated the shape of the striking body by a growing flat plate, and that of Wagner (1931), 
who went a step beyond Kármán’s analysis by considering also the water splash, and so including a wetting correction 
factor. The Second World War also served as an impetus for conducting further research in this field, primarily because 
of the interest in water entry and water exit of projectiles. The complete treatment of the problem should include the 
elasticity of the impact body as well as air cushion compressibility effects. Nowadays, the impact problem also belongs 
to the interest of naval architecture and offshore platform design. 

A good and comprehensive review of the hydrodynamic impact problem can be found in Korobkin and 
Pukhnachov (1988). The simplest problem is the case of the rigid-body impact against a liquid free-surface, in which 
compressibility effects are not take into account and the flow is considered inviscid and irrotational. The time-scale 
representing the phenomenon is so small that, during the very starting stage, the free surface can be asymptotically 
replaced by an equipotential boundary condition, corresponding to the limit of infinity frequency in the sense of the 
harmonic wave radiation problem. Nevertheless, this approximation is true everywhere except in the near field of the 
impacting body, where a jet (or spray) is formed. 

The correct consideration of the jets is, in essence, the reason for an apparent controversy, noticed by Miloh (1981), 
but previously touched somehow by Shiffman and Spencer (1951). This apparent controversy points out a significant 
discrepancy between impacting load calculations when methods based on integration of the pressure field or, 
alternatively, energy approaches are used instead. Korobkin and Pukhnachov (1988) pointed that half of the kinetic 
energy is transferred to the jets and half to bulk of the fluid. The same conclusion is drawn by Cooker and Peregrine 
(1995) through a pressure-impulse theory approach and by Molin, Cointe and Fontaine (1996), based on matched 
asymptotic expansion solutions obtained by Cointe and Armand (1987) and by Faltinsen and Zhao (1997), for some 
particular impacting bodies such as cylinders and spheres.  

Nonetheless, despite all those previous observations, the apparent discrepancy has been recently claimed non-
existent by Wu (1998), on different basis. Although algebraically correct, the analysis conducted by Wu is misleading. 
It was conducted taking a control volume where the free surface is substituted by an equipotential control surface on 
which, as an ad-hoc boundary condition, the velocity potential time derivative is erroneously assumed null everywhere, 
even in the neighbourhood of the impacting body. Physically speaking, this assumption can be interpreted as to 
disregard the jets (or sprays). Wu also presents a consistency analysis through the classical Lagrange Equation 
approach, as in Lamb, art. 137. But this reasoning is also misleading, once such equation is valid only when the system 
mass is not explicitly dependent on position (and velocity), hypothesis which would hold only if the jets were not 
considered apart from the bulk of fluid. Further details about the application of Lagrange equation to mechanical 
systems with mass explicitly dependent on position can be found in Pesce (2003). 

This paper focuses on the discussion of asymptotic solutions, presenting some experimental results. Although not 
intended to present an extensive review on this very complex problem, the work addresses some problems considered 
relevant for the present analysis, as the apparent controversy already described. A somewhat broader review is given in 
Pesce (2000). 
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2. Some Mathematical Background  

 
As the flow is assumed inviscid and irrotational, a potential scalar function ),,( zyxφ  defines the velocity field. For 

the sake of simplicity, we consider the fluid at rest before the first contact. Also, the fluid is supposed to be ideal, such 
that no compressibility effects exist. Laplace equation 0=∆φ  is the field equation. The proper boundary conditions, for 
the surfaces that enclosure the control-volume, are shown in Fig. (1). 
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Figure 1 The whole control volume of fluid Ω in an arbitrary instant of time t, and its closure surface 

HRFB SSSSS ∪∪∪==∂Ω . 

A usual hypothesis in the theory of hydrodynamic impact is to consider the free surface to be known at += 0t , such 
that 0)0,,( == +tyxζ . This is consistent with conventional mathematical modeling of impact problems in classical 
mechanics. A Dirichlet type boundary condition is then usually assumed on the free surface 0)0,,( === +tyxz ζ , 
namely 0)0,,( == +

ζ
φ tyx , leading to the conclusion that, at += 0t , kinetic energy transferred to the fluid could be well 

represented through an integral over the body surface. 
This equation satisfies the linearized free surface condition 0  ;0 ==+ zg ztt φφ  when the asymptotic limit for the 

harmonic problem is taken as the frequency tends to infinity. In fact, according to this linearized condition the potential 
on the free surface behaves like 0  ;2 =≈ zg z ωφφ  which tends to zero as ∞→ω , for a finite zφ . 

Nevertheless, it should be firstly observed that 0
00 == ++

== tytx ζζ  is consistent with the assumption 

0)0,,( == +tyxζ , thus leading to 
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on the free surface, and at least not very close to the intersection between the free surface and the body surface, 
where a jet or spray would be formed. 

On the other hand, the dynamic free-surface condition is 
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3. The Pressure Impulse Approach 
 

Cooker and Peregrine (1995) studied the hydrodynamic impact problem through the concept of pressure impulse, 
where 
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As those authors pointed out, the change in velocity during the impulsive event is supposed to take place over such 
a short time that the non-linear convective terms in the equation of motion can be neglected compared with the time 
derivative one, so that 
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Then, not taking into account the compressibility of the fluid, the equation above yields 
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and the boundary conditions become 
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where the superscript I  indicates that the corresponding surfaces are seen from the impulsive point of view. With the 
assumption of impulsive idealization, the rate of change of the kinetic energy can be written as 
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And, after some algebraic manipulations, using the field equations and the proper boundary conditions, 
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This indicates the apparent loss of kinetic energy ever cited. Since the flow is assumed incompressible, inviscid and 
irrotational, all possible loss of energy is related to its flux through the boundary IΩ . In the present case, more 
specifically through the free surface I

FS , near the impacting body, where the convective terms cannot be neglected. 
Though mass and momentum fluxes could be negligible through the jets, energy flux would not, representing a 
considerable part of the energy transferred to the whole fluid. 

If a contraposition between momentum and energy approaches is considered, without taking the jets properly into 
account, different results are also obtained. According to Shiffman and Spencer (1951), the explanation for the 
difference, encountered when using momentum or energy principles considerations, would be related to a proper added 
mass definition. This is, actually, equivalent to consider or not the jets as part of the bulk of fluid. 
 
3. Matched Asymptotic Expansion Approach 
 

Faltinsen and Zhao (1997) treated the special case of an axi-symmetric body by using matched asymptotic 
expansions. Let the generatrix of the body, measured from its vertex, be given by )(rηη = , r  measured from the axis of 
revolution. Let also )(tcr =  define the position of the jet root. The jet root surface is given by )()(2)( tcttS JRJ πδ= . In the 
manner of Faltinsen and Zhao, following Wagner (1931), 
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where W  is the vertical component of the body velocity, and w  is the vertical component of velocity on the control 
surface 0=z , corresponding to a proper outer solution for the potential field. From Faltinsen and Zhao (1997), 
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is a proper function, valid for crz >= ;0 , presenting a vertical dipole-like behavior at infinity, and derived from an 
outer potential solution. Writing, 
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Equation (9) is an integral equation, 
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Notice that the jet root velocity is given by 
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Once )(cµ  is determined by solving Eq. (12) for a given )(rη , the jet root velocity is obtained. By matching outer 

and inner solutions, (equating the inner expansion of the outer solution to the outer expansion of the inner solution), 
Faltinsen and Zhao, following Armand and Cointe (1987), obtained 
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and then 
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It also follows from the matched asymptotic method that the jet velocity is twice the marching velocity of the jet 
root on the body surface, i.e., 
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Consider firstly the normal impact problem, under constant velocity such that zn WnU −= . Then from 
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it follows that 
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Therefore, 
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or, using Eq. (13), 
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Equation (20) agrees exactly with Zhao and Faltinsen's (1997) result, 

 



 

dt
dcVcdr

rc

rr
dt
dccVF

c

Z
2

0
22

422 ρπ
π

ρ =
−

= ∫        (22)  

derived by pressure integration over the body surface, considering the case of constant velocity. They took the outer 
solution, ( ) crrcW <−−=    ;  2 22πφ , but only retaining in Bernoulli equation the term, 
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vary with time, )(tWW = , such that 
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one obtains instead 
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Recognizing 

3

0

22

0
3
442 crdrrcdr

W
rM

cc

a ρρφπρ =−== ∫∫        (25)  

as the added mass of a disk of radius c at infinite frequency, Eq. (24) can be written 
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claimed by Faltinsen and Zhao (1997) as generally correct. Note that the time derivative of the kinetic energy in the 
bulk of the fluid is 
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The first term within parenthesis 
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which corresponds to the time rate of the added mass in the bulk of the fluid, caused by the variation of the wetted 
surface geometry (the so-called wetted-correction), has exactly the same expression as the flux of kinetic energy 
through the spray, for a given W, as can be seen from Eq. (17) to Eq. (19). Closing this asymptotic solution, the 
equation of motion for the body, is then (W has been considered positive downward and the force positive upwards), 
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For a sphere Faltinsen and Zhao obtained 
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so that, for the case of constant velocity, 
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that is exactly the result obtained by Faltinsen and Zhao who, as discussed above, used consistent pressure integration 
over the body, with the so-called wetted surface correction. 

If the velocity is a function of time, )(tWW = , the force on the sphere will have an additional term, according to 
Eq. (24), 
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The equation of motion for the sphere, in the very start of body-surface interaction (such that 0≥W ,) reads 
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One point should be observed here. If the term ( )2

2
1 φρ ∇− , in Bernoulli equation, is preserved in the inner expansion of 

the outer solution ( ) ( )( ) −→−−≅ crrccW    ; 22 πφ , gives rise to a logarithmic singularity in the vertical force of the form: 
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. Such a singularity does not exist physically. It is a consequence of an infinity velocity 

derived from the pure outer solution. Remember that the outer solution assumes 0=φ  everywhere on the free surface, 
what is not valid very close to the body, since this condition does not mimic the zero pressure condition, wherever the 
convective terms are not small. 
 
4. The Analytic Mechanics Approach 
 

Now, from the work by Pesce (2003), from the point of view of Analytic Mechanics, where the Lagrange equation 
for systems with explicit dependence of mass with position (and velocity) is properly derived, the force applied on the 
bulk of fluid is 
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Here, T is the kinetic energy of the bulk of fluid (excluding the jet) and αsin2 jvm&  corresponds to the reactive force 
(Metchersky force in Russian scientific literature), being m&  the flux of mass through the jets, 

jv  the absolute velocity of 
the fluid particles at the jet root and α the instantaneous angle of the jet with respect to the horizontal. After some 
algebraic manipulation, it yields 
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This is consistent with Eq. (26), apart the second term, which can be proved to be neglectable. As discussed above, 

the way to calculate the instantaneous added mass, the flux of mass and the velocity at the jet root can be found in 
Faltinsen and Zhao (1997), Cointe and Armand (1987). As a matter of fact, the analysis by Molin et al (1996), after 
asymptotic analysis by Armand and Cointe on the particular and important case of a circular cylinder of radius R , 
proved that, being RWt /=ε  the small parameter, the thickness of the jet root is of order 4/3 Rπε . And the velocity at 
the jet root is of order W1−ε . It then follows that mass flux through the jets is of order 2/2 RLWπρε  and so, jvm&  is of 
order 2/2RLWεπρ , (so is the vertical force applied on the bulk of fluid corresponding to the flux of momentum through 
the jets), being L  the cylinder’s length. Contrarily, the energy flux is of order 3RLWπρ  and 
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On the other hand, if, (see, e.g., Wu (1998)), the third and fourth terms appearing on the right hand side of Eq. 33 
were not considered at all, a different assertive would be obtained, according to which 
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4. Experiments with a Hemisphere 
 

Crivellari (2002) conducted some experiments with a hemisphere impacting on the free surface of water. The 
hemisphere is made up of acrylic, with a steel plate inside, where a piezoelectric accelerometer is fixed. The mass of the 
hemisphere may be adjusted by adding steel plates to the original one. The acrylic shell is 6mm thick with radius 
175mmm. Standard structural analysis has been conducted to guarantee not only structural integrity but also that the 
piece is rigid enough to allow deformations to be unimportant. Such analysis considered an initial impacting velocity of 
3.0m/s, a maximum value for the mass of 50kg and took the asymptotic model to calculate acceleration and impacting 
force. A series of structural impact experiments, using an instrumented hammer, has also been conducted, in order to 
identify modes and natural frequencies of the steel structure supporting the accelerometer, guaranteeing that its response 
frequency is appropriate. 
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Figure 2 The acrylic hemisphere. 
 

 
 

 
 

 
 

 
 
 
 
 
 

Figure 3 Instrumentation and signal processing. 

  
 

 

 

 
 

 

 

 

Figure 4 A sequence of an impacting experiment. A hemisphere falls from 1 a height of meter, striking an initially 
quiescent water free-surface. 

The experiments were conducted with 4 different values for the mass: 7.88, 6.81, 5.730 and 4.58 Kg. The 
hemisphere was left in free-fall, from a height of 1.0 meter, striking an initially quiescent water free surface. Figure 4 
shows a sequence of an impacting experiment. Figure 5 presents a typical acceleration record. By analyzing the 
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resulting graphics, it is possible to see that the impact of the hemisphere occurred at st 8.3≈ . However, it can be 
distinguished two acceleration peaks, Fig. 5. The first one corresponds to the impact of the sphere. But the other 
represents the impact of the “diametrical web”. Only the first peak should be considered, for comparison with analytical 
results. After this, there is a decaying oscillatory motion, corresponding to the heave movement of the body, once the 
buoyancy forces start to act together with the gravitational one. Figure 6 shows the comparison between experiments 
and the analytical model, by integrating numerically Eq. (32). It can be seen that peak determined from the analytical 
model overestimates, by circa 30%, the experimental measures, Fig. 6. Also, the ramp shown in the analytical estimates 
are much more abrupt, than those observed through measured acceleration. Reasons for these discrepancies are not well 
clear and deserve further investigation, even considering the sensor and instrumentation used. Nevertheless, the 
experiment recovers qualitatively the results by Moghisi and Squire (1981).  
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Figure 5 An illustrative acceleration time history for a hemisphere (radius = 0.175m, mass = 4.580Kg). 
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Figure 6 Comparison between experiments and analytical model for a hemisphere (R=0.175m) falling from a 

height of 1.0 meter, striking the initially quiescent water free surface. Four values of mass are considered. 



 
 
4. Conclusions 
 

This work addressed the classical hydrodynamic impact problem of a bluff body striking a quiescent free surface, 
focusing on a brief review of asymptotic methods. The result by Faltinsen and Zhao (1997), concerning a sphere were 
recovered and expanded to consider the problem of variable velocity. Besides, the analytical formulation for the impact 
force calculation, shown to be consistent in Pesce  (2003), recovers, up to third order in the very small impacting time-
scale, the intuitive equation ( )WM

dt
dF B

aZ −= , encountered in many papers, as in Faltinsen and Zhao (1997). This has been 

discussed, properly, on a physical and mathematical basis and from the point of view of  analytic mechanics. 
Few experimental results with a hemisphere were presented and compared with the asymptotic solution. Some 

discrepancies were found. The asymptotic solution overestimates the force peak by circa 30%. Reasons for these 
discrepancies are not well clear and deserve further investigation, even considering the sensor and instrumentation used. 
Nevertheless, experimental and analytical results present the same qualitative trend. 
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